[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A009483
E.g.f. sin(sin(x)*exp(x)).
0
0, 1, 2, 1, -12, -83, -338, -555, 4872, 58713, 355322, 988073, -6857796, -129165307, -1078218906, -4414644611, 23381079184, 664338643633, 7109036257394, 38790001170257, -152532610916348, -6632928177660835, -87579228437764450
OFFSET
0,3
FORMULA
a(n)=sum(j=0..(n-1)/2, (2^(-(2*j))*sum(k=j..(n-1)/2, binomial(n,n-2*k-1)*((2*j+1)^(n-2*k-1)*sum(i=0..(2*j+1)/2, (2*i-2*j-1)^(2*k+1)*binomial(2*j+1,i)*(-1)^(k+1-i)))))/(2*j+1)!). - Vladimir Kruchinin, Jun 13 2011
MATHEMATICA
With[{nn=30}, CoefficientList[Series[Sin[Sin[x]Exp[x]], {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Jun 12 2013 *)
PROG
(Maxima)
a(n):=sum((2^(-(2*j))*sum(binomial(n, n-2*k-1)*((2*j+1)^(n-2*k-1)*sum((2*i-2*j-1)^(2*k+1)*binomial(2*j+1, i)*(-1)^(k+1-i), i, 0, (2*j+1)/2)), k, j, (n-1)/2))/(2*j+1)!, j, 0, (n-1)/2); /* Vladimir Kruchinin, Jun 13 2011 */
CROSSREFS
Sequence in context: A012291 A012585 A053566 * A181867 A231611 A171510
KEYWORD
sign,easy
AUTHOR
EXTENSIONS
Extended with signs by Olivier Gérard, Mar 15 1997
STATUS
approved