[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008451
Number of ways of writing n as a sum of 7 squares.
18
1, 14, 84, 280, 574, 840, 1288, 2368, 3444, 3542, 4424, 7560, 9240, 8456, 11088, 16576, 18494, 17808, 19740, 27720, 34440, 29456, 31304, 49728, 52808, 43414, 52248, 68320, 74048, 68376, 71120, 99456, 110964, 89936, 94864, 136080, 145222
OFFSET
0,2
REFERENCES
E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 121.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 314.
LINKS
Philippe A. J. G. Chevalier, On the discrete geometry of physical quantities, 2013
P. A. J. G. Chevalier, A "table of Mendeleev" for physical quantities?, Slides from a talk, May 14 2014, Leuven, Belgium.
Shi-Chao Chen, Congruences for rs(n), Journal of Number Theory, Volume 130, Issue 9, September 2010, Pages 2028-2032.
FORMULA
G.f.: theta_3(0,x)^7, where theta_3 is the third Jacobi theta function. - Robert Israel, Jul 16 2014
a(n) = (14/n)*Sum_{k=1..n} A186690(k)*a(n-k), a(0) = 1. - Seiichi Manyama, May 27 2017
MAPLE
series((sum(x^(m^2), m=-10..10))^7, x, 101);
# Alternative
#(requires at least Maple 17, and only works as long as a(n) <= 10^16 or so):
N:= 1000: # to get a(0) to a(N)
with(SignalProcessing):
A:= Vector(N+1, datatype=float[8], i-> piecewise(i=1, 1, issqr(i-1), 2, 0)):
A2:= Convolution(A, A)[1..N+1]:
A4:= Convolution(A2, A2)[1..N+1]:
A5:= Convolution(A, A4)[1..N+1];
A7:= Convolution(A2, A5)[1..N+1];
map(round, convert(A7, list)); # Robert Israel, Jul 16 2014
# Alternative
A008451list := proc(len) series(JacobiTheta3(0, x)^7, x, len+1);
seq(coeff(%, x, j), j=0..len-1) end: A008451list(37); # Peter Luschny, Oct 02 2018
MATHEMATICA
Table[SquaresR[7, n], {n, 0, 36}] (* Ray Chandler, Nov 28 2006 *)
SquaresR[7, Range[0, 50]] (* Harvey P. Dale, Aug 26 2011 *)
PROG
(Sage)
Q = DiagonalQuadraticForm(ZZ, [1]*7)
Q.representation_number_list(37) # Peter Luschny, Jun 20 2014
(Python)
# uses Python code from A000141
from math import isqrt
def A008451(n): return A000141(n)+(sum(A000141(n-k**2) for k in range(1, isqrt(n)+1))<<1) # Chai Wah Wu, Jun 23 2024
CROSSREFS
Row d=7 of A122141 and of A319574, 7th column of A286815.
Sequence in context: A166389 A085036 A107935 * A033276 A006858 A027818
KEYWORD
nonn
EXTENSIONS
Extended by Ray Chandler, Nov 28 2006
STATUS
approved