[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007727
Number of 2n-bead black-white strings with n black beads and fundamental period 2n.
14
1, 2, 4, 18, 64, 250, 900, 3430, 12800, 48600, 184500, 705430, 2703168, 10400598, 40113164, 155117250, 601067520, 2333606218, 9075085776, 35345263798, 137846344000, 538257870990, 2104098258284, 8233430727598, 32247600966144
OFFSET
0,2
COMMENTS
For n>0, a(n) is divisible by n^2 (cf. A268619) and 6*a(n) is divisible by n^3 (cf. A268592). - Max Alekseyev, Feb 07 2016
LINKS
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
FORMULA
For n>0, a(n) = Sum_{d|n} A008683(n/d)*A000984(d).
For n>0, a(n) = 2 * A045630(n).
a(0)=1, a(n) = n * A060165(n) = 2n * A022553(n). - Ralf Stephan, Sep 01 2003
MAPLE
A007727 := proc(n)
if n = 0 then
1;
else
add(numtheory[mobius](n/d)*binomial(2*d, d), d =numtheory[divisors](n)) ;
end if ;
end proc:
seq(A007727(n), n=0..10) ; # R. J. Mathar, Nov 10 2021
MATHEMATICA
a[n_] := If[n == 0, 1, Sum[MoebiusMu[n/d] Binomial[2d, d], {d, Divisors[n]}]];
Table[a[n], {n, 0, 24}] (* Jean-François Alcover, May 05 2023 *)
PROG
(PARI) { a(n) = if(n>0, sumdiv(n, d, moebius(n/d)*binomial(2*d, d)), 0); }
CROSSREFS
KEYWORD
nonn
AUTHOR
Doug Bowman, bowman(AT)math.uiuc.edu.
EXTENSIONS
Edited by Max Alekseyev, Feb 09 2016
STATUS
approved