[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007250
McKay-Thompson series of class 4a for the Monster group.
(Formerly M5353)
2
1, -76, -702, -5224, -23425, -98172, -336450, -1094152, -3188349, -8913752, -23247294, -58610304, -140786308, -328793172, -740736900, -1629664840, -3486187003, -7307990208, -14976155896, -30157221352, -59594117256, -115975615160, -222119374922, -419704427016
OFFSET
0,2
COMMENTS
A more correct name would be: Expansion of replicable function of class 4a. See Alexander et al., 1992. - N. J. A. Sloane, Jun 12 2015
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..499 from G. A. Edgar)
D. Alexander, C. Cummins, J. McKay and C. Simons, Completely replicable functions, LMS Lecture Notes, 165, ed. Liebeck and Saxl (1992), 87-98, annotated and scanned copy.
J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
Masao Koike, Modular forms on non-compact arithmetic triangle groups, Unpublished manuscript [Extensively annotated with OEIS A-numbers by N. J. A. Sloane, Feb 14 2021. I wrote 2005 on the first page but the internal evidence suggests 1997.]
J. McKay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters, Comm. Algebra 18 (1990), no. 1, 253-278.
FORMULA
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = - f(t) where q = exp(2 Pi i t). - Michael Somos, Jul 22 2011
a(n) = A007249(n) - 64 * A022577(n-1).
Expansion of q^(1/2) * ((eta(q) / eta(q^2))^12 - 64*(eta(q^2) / eta(q))^12) in powers of q. - G. A. Edgar, Mar 10 2017
EXAMPLE
G.f. = 1 - 76*x - 702*x^2 - 5224*x^3 - 23425*x^4 - 98172*x^5 - 336450*x^6 + ...
T4a = 1/q - 76*q - 702*q^3 - 5224*q^5 - 23425*q^7 - 98172*q^9 - ...
MAPLE
A022577L := proc(n)
mul((1+x^m)^12, m=1..n+1) ;
taylor(%, x=0, n+1) ;
gfun[seriestolist](%) ;
end proc:
A007249L := proc(n)
if n = 0 then
0 ;
else
mul(1/(1+x^m)^12, m=1..n+1) ;
taylor(%, x=0, n+1) ;
gfun[seriestolist](%) ;
end if;
end proc:
a022577 := A022577L(80) ;
a007249 := A007249L(80) ;
printf("1, ");
for i from 1 to 78 do
printf("%d, ", op(i+1, a007249)-64*op(i, a022577) );
end do: # R. J. Mathar, Sep 30 2011
MATHEMATICA
a[ n_] := Module[ {m = InverseEllipticNomeQ @ q, e}, e = (1 - m) / (m / 16)^(1/2); SeriesCoefficient[ (e - 64 / e) q^(1/2), {q, 0, n}]]; (* Michael Somos, Jul 22 2011 *)
QP = QPochhammer; A = (QP[q]/QP[q^2])^12; s = A - 64*(q/A) + O[q]^30; CoefficientList[s, q] (* Jean-François Alcover, Nov 15 2015, adapted from PARI *)
nmax = 30; CoefficientList[Series[Product[((1-x^k) / (1-x^(2*k)))^12, {k, 1, nmax}] - 64*x*Product[((1-x^(2*k)) / (1-x^k))^12, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 11 2017 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); A = (eta(x + A) / eta(x^2 + A))^12; polcoeff( A - 64 * x / A, n))}; /* Michael Somos, Jul 22 2011 */
(PARI) N=66; q='q+O('q^N); t=(eta(q)/eta(q^2))^12; Vec(t - 64*q/t) \\ Joerg Arndt, Mar 11 2017
CROSSREFS
KEYWORD
sign,easy
STATUS
approved