OFFSET
1,3
COMMENTS
Apparently this sequence and A111065 have the same parity. - Jeremy Gardiner, Oct 15 2005
Obviously, terms of this sequence also have the same parity (and also the same digital sum mod 6) as those of A118594, see below. - M. F. Hasler, May 08 2013
The number of n-digit terms is given by A225367 -- which counts palindromes in base 3, A118594. The terms here are the base 3 palindromes considered there, with 2 replaced by 8 (which means this sequence A006072 arises from A118594 not only by taking the 3rd power of each digit, but also by superposing the number with its horizontal or vertical reflection, somehow remarkably given the symmetry of numbers considered here). - M. F. Hasler, May 05 2013 [Part of the comment moved from A225367 to here on May 08 2013]
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..10000 (terms 1..1450 from Vincenzo Librandi)
Eric Weisstein's World of Mathematics, Tetradic Number
FORMULA
MATHEMATICA
NextPalindrome[n_] := Block[{l = Floor[Log[10, n] + 1], idn = IntegerDigits[n]}, If[ Union[idn] == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[idn, Ceiling[l/2]]]] > FromDigits[ Take[idn, -Ceiling[l/2]]], FromDigits[ Join[ Take[idn, Ceiling[l/2]], Reverse[ Take[idn, Floor[l/2]]]]], idfhn = FromDigits[ Take[idn, Ceiling[l/2]]] + 1; idp = FromDigits[ Join[ IntegerDigits[ idfhn], Drop[ Reverse[ IntegerDigits[ idfhn]], Mod[l, 2]]]]]]]]; np = 0; t = {0}; Do[np = NextPalindrome[np]; If[Union[Join[{0, 1, 8}, IntegerDigits[np]]] == {0, 1, 8}, AppendTo[t, np]], {n, 1150}]; t (* Robert G. Wilson v *)
TetrNumsUpTo10powerK[k_]:= Select[FromDigits/@ Tuples[{0, 1, 8}, k], IntegerDigits[#] == Reverse[IntegerDigits[#]] &]; TetrNumsUpTo10powerK[7] (* Mikk Heidemaa, May 21 2017 *)
PROG
(PARI) {for(l=1, 5, u=vector((l+1)\2, i, 10^(i-1)+(2*i-1<l)*10^(l-i))~; forvec(v=vector((l+1)\2, i, [l>1&&i==1, 2]), print1((v+v\2*6)*u", ")))} \\ The n-th term could be produced by using (partial sums of) A225367 to skip all shorter terms, and then skipping the adequate number of vectors v until n is reached. - M. F. Hasler, May 05 2013
(Python)
from itertools import count, islice, product
def agen():
yield from [0, 1, 8]
for d in count(2):
for start in "18":
for rest in product("018", repeat=d//2-1):
left = start + "".join(rest)
for mid in [[""], ["0", "1", "8"]][d%2]:
yield int(left + mid + left[::-1])
print(list(islice(agen(), 42))) # Michael S. Branicky, Mar 29 2022
CROSSREFS
KEYWORD
base,nonn,easy
AUTHOR
EXTENSIONS
More terms from Robert G. Wilson v, Nov 16 2005
STATUS
approved