[go: up one dir, main page]

login
A005839
Lexicographically earliest increasing nonnegative sequence that contains no 4-term arithmetic progression.
(Formerly M0956)
20
0, 1, 2, 4, 5, 7, 8, 9, 14, 15, 16, 18, 25, 26, 28, 29, 30, 33, 36, 48, 49, 50, 52, 53, 55, 56, 57, 62, 64, 65, 66, 79, 86, 87, 88, 90, 93, 98, 101, 104, 105, 108, 109, 110, 121, 125, 135, 144, 148, 150, 151, 159, 162, 166, 168, 169, 170, 173, 175, 176, 182
OFFSET
1,3
COMMENTS
a(n) = A005837(n) - 1. - Alois P. Heinz, Jan 31 2014
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, E10.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
David W. Wilson, Table of n, a(n) for n = 1..10000 a(1..1001) from Alois P. Heinz
MATHEMATICA
t = {0, 1, 2}; Do[s = Table[Append[i, n], {i, Subsets[t, {3}]}];
If[! MemberQ[Table[Differences[i, 2], {i, s}], {0, 0}], AppendTo[t, n]], {n, 3, 200}]; t (* T. D. Noe, Apr 17 2014 *)
CROSSREFS
Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
3-term AP: A005836 (>=0), A003278 (>0);
4-term AP: A005839 (>=0), A005837 (>0);
5-term AP: A020654 (>=0), A020655 (>0);
6-term AP: A020656 (>=0), A005838 (>0);
7-term AP: A020657 (>=0), A020658 (>0);
8-term AP: A020659 (>=0), A020660 (>0);
9-term AP: A020661 (>=0), A020662 (>0);
10-term AP: A020663 (>=0), A020664 (>0).
Sequence in context: A344406 A184164 A190852 * A254792 A062102 A092289
KEYWORD
nonn
EXTENSIONS
More terms from Jeffrey Shallit, Aug 15 1995.
Edited (with new offset, etc.) by N. J. A. Sloane, Jan 04 2016
STATUS
approved