[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005686
Number of Twopins positions.
(Formerly M0267)
4
0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 8, 9, 12, 14, 18, 22, 27, 34, 41, 52, 63, 79, 97, 120, 149, 183, 228, 280, 348, 429, 531, 657, 811, 1005, 1240, 1536, 1897, 2347, 2902, 3587, 4438, 5484, 6785, 8386, 10372, 12824, 15856, 19609, 24242, 29981, 37066, 45837
OFFSET
0,7
REFERENCES
R. K. Guy, "Anyone for Twopins?" in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Natasha Blitvić, Vicente I. Fernandez, A Combinatorial Model for Heterogeneous Microbial Growth, arXiv:1901.04080 [math.CO], 2019.
S. Falcon, Generalized (k,r)-Fibonacci Numbers, Gen. Math. Notes, 25(2), 2014, 148-158.
R. K. Guy, Anyone for Twopins?, in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15. [Annotated scanned copy, with permission]
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
I. Wloch, U. Bednarz, D. Bród, A Wloch and M. Wolowiec-Musial, On a new type of distance Fibonacci numbers, Discrete Applied Math., Volume 161, Issues 16-17, November 2013, Pages 2695-2701.
FORMULA
a(n) = Sum_{k=0..floor(n/2)} binomial(floor((n+3k-3)/5), k). - Paul Barry, Jul 10 2004
G.f.: (x+x^2)/(1-x^2-x^5). - Ralf Stephan, Apr 21 2004
a(n) = A001687(n)+A001687(n-1). - Ralf Stephan, Apr 21 2004
a(n) = a(n-2) + a(n-5). - Michael Somos, Jul 15 2004
a(n+1) = Sum_{k=0..floor(n/5)} A065941(n-4*k, n-5*k). - Johannes W. Meijer, Aug 05 2013
MAPLE
A005686 := -(z+1)*(z**3+z+1)/(-1+z**2+z**5); # conjectured by Simon Plouffe in his 1992 dissertation; gives sequence except for the initial 1's
a := proc(n): if n = 0 then 0 else add(binomial(floor((n+3*k-4)/5), k), k=0..floor((n-1)/2)) fi: end: seq(a(n), n=0..54); # Johannes W. Meijer, Aug 05 2013
MATHEMATICA
nn=54; CoefficientList[Series[(x+x^2)/(1-x^2-x^5), {x, 0, nn}], x] (* Geoffrey Critzer, Apr 28 2013 *)
m = 5; For[n = 0, n < m, n++, a[n] = 1]; For[n = m, n < 51, n++, a[n] = a[n - m] + a[n - 2]]; Table[a[n], {n, 0, 50}] (*Sergio Falcon, Nov 12 2015 *)
Join[{0}, LinearRecurrence[{0, 1, 0, 0, 1}, {1, 1, 1, 1, 1}, 60]] (* Vincenzo Librandi, Jan 19 2016 *)
PROG
(PARI) a(n)=if(n<0, polcoeff((x^3+x^4)/(1+x^3-x^5)+x^-n*O(x), -n), polcoeff((x+x^2)/(1-x^2-x^5)+x^n*O(x), n)) /* Michael Somos, Jul 15 2004 */
(PARI) a(n)=sum(k=0, (n-1)\2, binomial((n+3*k-4)\5, k))
(Magma) I:=[1, 1, 1, 1, 1]; [0] cat [n le 5 select I[n] else Self(n-2)+Self(n-5): n in [1..60]]; // Vincenzo Librandi, Jan 19 2016
CROSSREFS
Cf. A001687.
Sequence in context: A335746 A015741 A015753 * A328675 A365072 A118082
KEYWORD
nonn,easy
EXTENSIONS
More terms from Paul Barry, Jul 10 2004
STATUS
approved