[go: up one dir, main page]

login
A004233
a(n) = ceiling(log(n)).
8
0, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
OFFSET
1,3
COMMENTS
Does not satisfy Benford's law [Whyman et al., 2016]. - N. J. A. Sloane, Feb 12 2017
LINKS
G. Whyman, N. Ohtori, E. Shulzinger, and Ed. Bormashenko, Revisiting the Benford law: When the Benford-like distribution of leading digits in sets of numerical data is expectable?, Physica A: Statistical Mechanics and its Applications, 461 (2016), 595-601.
MATHEMATICA
Ceiling[Log[Range[100]]] (* Paolo Xausa, Jun 28 2024 *)
PROG
(Haskell)
a004233 = ceiling . log . fromIntegral -- Reinhard Zumkeller, Mar 17 2015
(PARI) a(n)=ceil(log(n)) \\ Charles R Greathouse IV, Apr 29 2015
CROSSREFS
KEYWORD
nonn
STATUS
approved