# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a004233 Showing 1-1 of 1 %I A004233 #27 Jun 28 2024 05:26:40 %S A004233 0,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4, %T A004233 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5, %U A004233 5,5,5,5,5,5,5,5,5,5,5,5,5 %N A004233 a(n) = ceiling(log(n)). %C A004233 Does not satisfy Benford's law [Whyman et al., 2016]. - _N. J. A. Sloane_, Feb 12 2017 %H A004233 T. D. Noe, Table of n, a(n) for n = 1..10000 %H A004233 G. Whyman, N. Ohtori, E. Shulzinger, and Ed. Bormashenko, Revisiting the Benford law: When the Benford-like distribution of leading digits in sets of numerical data is expectable?, Physica A: Statistical Mechanics and its Applications, 461 (2016), 595-601. %H A004233 Index entries for sequences related to Benford's law %t A004233 Ceiling[Log[Range[100]]] (* _Paolo Xausa_, Jun 28 2024 *) %o A004233 (Haskell) %o A004233 a004233 = ceiling . log . fromIntegral -- _Reinhard Zumkeller_, Mar 17 2015 %o A004233 (PARI) a(n)=ceil(log(n)) \\ _Charles R Greathouse IV_, Apr 29 2015 %Y A004233 Cf. A000193, A000195, A000523. %K A004233 nonn %O A004233 1,3 %A A004233 _N. J. A. Sloane_ # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE