Astaat
Astaat is een scheikundig element met symbool At en atoomnummer 85. Het is zo zeldzaam dat het niet bekend is hoe het eruitziet; daarnaast zouden hoeveelheden die groot genoeg zijn om met het blote oog waar te nemen meteen verdampen door de intense radioactiviteit. Theoretisch zou het een metalliek zilverkleurig metalloïde kunnen zijn. Soms wordt de naam "astatium" gebruikt als vertaling van het Engelse astatine, zoals "jodium" in plaats van jood als vertaling van het Engelse iodine.
Ontdekking
[bewerken | brontekst bewerken]Astaat komt van nature nauwelijks op aarde voor, de totale hoeveelheid in de aardkorst op enig moment bedraagt nog geen 30 gram.[1][2] Dit wordt door alle bronnen van elkaar overgeschreven. Anderen schatten de totale hoeveelheid zelfs op veel minder dan een gram.[3] Astaat ontstaat heel even als vervalproduct in uranium- en thoriumertsen in sommige vervalketens; deze isotopen vervallen echter zelf binnen enkele seconden weer tot andere elementen. Het is in 1940 voor het eerst gesynthetiseerd door Dale Corson, Kenneth Ross MacKenzie en Emilio Segrè aan de Universiteit van Californië - Berkeley tijdens het beschieten van bismutkernen met alfadeeltjes.[1]
De naam is afgeleid van het Griekse άστατος (astatos), dat instabiel betekent.[4] De halveringstijd van het stabielste astaatisotoop, astaat-210, bedraagt 8,1 uur. Van astaat zijn geen reguliere industriële toepassingen bekend. Wel is de isotoop astaat-211 in principe bruikbaar voor radiotherapeutische behandeling van kanker.
Opmerkelijke eigenschappen
[bewerken | brontekst bewerken]Met massaspectrometrie is aangetoond dat astaat chemisch veel overeenkomsten vertoont met halogenen, vooral met jodium, hetgeen ook volgt uit de positie van het element in het periodiek systeem, onder het element jood. Fysisch vertoont astaat echter meer overeenkomsten met metalloïden, zoals veel zware elementen. Berekend is dat een pentavalente koolstofverbinding zou kunnen bestaan als trigonale bipiramide in de vorm .[5][Noot 1]
Verschijning
[bewerken | brontekst bewerken]Astaat ontstaat uit het trage verval van zwaardere in de natuur voorkomende kernen zoals thorium en uranium, maar heeft zelf een korte halveringstijd. In de natuur komen zeer kleine hoeveelheden astaat-215, astaat-218 en astaat-219 voor die zich in evenwicht bevinden met uranium-233 en neptunium-239, als gevolg van de interactie van thorium en uranium met vrije neutronen.[1]
Voor wetenschappelijke doeleinden wordt astaat geproduceerd door bismut te bombarderen met alfadeeltjes. Hieruit ontstaan isotopen met halveringstijden variërend van enkele nanoseconden tot maximaal 8,1 uur voor astaat-210.
Isotopen
[bewerken | brontekst bewerken]Isotopen komen voor tussen astaat-191 en astaat-223, behalve astaat-192.
Stabielste isotopen | |||||
---|---|---|---|---|---|
Iso | RA (%) | Halveringstijd | VV | VE (MeV) | VP |
207At | syn | 1,80 h | α | 3,910 | 203Bi |
208At | syn | 1,63 h | α | 4,973 | 204Bi |
209At | syn | 5,41 h | α | 3,486 | 205Bi |
210At | syn | 8,1 h | α | 3,981 | 206Bi |
211At | syn | 7,214 h | α | 5,982 | 207Bi |
Toxicologie en veiligheid
[bewerken | brontekst bewerken]Op het gebied van toxicologie is vrijwel niets bekend over astaat.
Chemische aspecten
[bewerken | brontekst bewerken]Ten gevolge van de radioactieve instabiliteit van astaat is de chemie ervan grotendeels onbekend. Verbindingen met waterstof, broom en jood zijn beschreven.
Externe link
[bewerken | brontekst bewerken]- ↑ In hoeverre hier sprake is van een pentavalent koolstofatoom of een pentagecoördineerd koolstofatoom is wel de vraag, zie bijvoorbeeld bij Piramidaal carbokation.
- ↑ a b c CRC Handbook of Chemistry and Physics, 56. CRC press (1978), B-23. Gearchiveerd op 7 mei 2021.
- ↑ Astatine, Chemistry Explained. Gearchiveerd op 8 november 2020.
- ↑ Atatine Abundance in the Earth's Crust zie deze berekening. Gearchiveerd op 20 april 2021.
- ↑ Astatium, Elementymology & Elements Multidict. Gearchiveerd op 1 mei 2018.
- ↑ Pierrefixe, S., van Stralen, S., van Stralen, J., Fonseca Guerra, C., Bickelhaupt, F. (2009). Hypervalent Carbon Atom: “Freezing” the SN2 Transition State. Angewandte Chemie 121: 6591-6593. DOI: 10.1002/ange.200902125. Geraadpleegd op 25 maart 2011.