Preview |
PDF, English
Download (23MB) | Terms of use |
Abstract
In this work, we consider Mumford-Shah and Potts models and their higher order generalizations. Mumford-Shah and Potts models are among the most well-known variational approaches to edge-preserving smoothing and partitioning of images. Though their formulations are intuitive, their application is not straightforward as it corresponds to solving challenging, particularly non-convex, minimization problems. The main focus of this thesis is the development of new algorithmic approaches to Mumford-Shah and Potts models, which is to this day an active field of research. We start by considering the situation for univariate data. We find that switching to higher order models can overcome known shortcomings of the classical first order models when applied to data with steep slopes. Though the existing approaches to the first order models could be applied in principle, they are slow or become numerically unstable for higher orders. Therefore, we develop a new algorithm for univariate Mumford-Shah and Potts models of any order and show that it solves the models in a stable way in O(n^2). Furthermore, we develop algorithms for the inverse Potts model. The inverse Potts model can be seen as an approach to jointly reconstructing and partitioning images that are only available indirectly on the basis of measured data. Further, we give a convergence analysis for the proposed algorithms. In particular, we prove the convergence to a local minimum of the underlying NP-hard minimization problem. We apply the proposed algorithms to numerical data to illustrate their benefits. Next, we apply the multi-channel Potts prior to the reconstruction problem in multi-spectral computed tomography (CT). To this end, we propose a new superiorization approach, which perturbs the iterates of the conjugate gradient method towards better results with respect to the Potts prior. In numerical experiments, we illustrate the benefits of the proposed approach by comparing it to the existing Potts model approach from the literature as well as to the existing total variation type methods. Hereafter, we consider the second order Mumford-Shah model for edge-preserving smoothing of images which –similarly to the univariate case– improves upon the classical Mumford-Shah model for images with linear color gradients. Based on reformulations in terms of Taylor jets, i.e. specific fields of polynomials, we derive discrete second order Mumford-Shah models for which we develop an efficient algorithm using an ADMM scheme. We illustrate the potential of the proposed method by comparing it with existing methods for the second order Mumford-Shah model. Further, we illustrate its benefits in connection with edge detection. Finally, we consider the affine-linear Potts model for the image partitioning problem. As many images possess linear trends within homogeneous regions, the classical Potts model frequently leads to oversegmentation. The affine-linear Potts model accounts for that problem by allowing for linear trends within segments. We lift the corresponding minimization problem to the jet space and develop again an ADMM approach. In numerical experiments, we show that the proposed algorithm achieves lower energy values as well as faster runtimes than the method of comparison, which is based on the iterative application of the graph cut algorithm (with α-expansion moves).
Document type: | Dissertation |
---|---|
Supervisor: | Petra, Prof. Dr. Stefania |
Place of Publication: | Heidelberg |
Date of thesis defense: | 17 November 2020 |
Date Deposited: | 26 Nov 2020 08:11 |
Date: | 2020 |
Faculties / Institutes: | The Faculty of Mathematics and Computer Science > Institut für Mathematik |
DDC-classification: | 510 Mathematics |