[go: up one dir, main page]

TOPICS
Search

Malfatti Circles


MalfattiCircles

Three circles packed inside a triangle such that each is tangent to the other two and to two sides of the triangle are known as Malfatti circles. The Malfatti configuration appears on the cover of Martin (1998).

MalfattiCircleConstruction

The positions and radii of the Malfatti circles can be found by labeling sides and distances as illustrated above. The length of the projection of the line connecting circles Gamma_1 and Gamma_2 onto side AB can be found from the diagram at right to be

d_(12)=sqrt((r_1+r_2)^2-(r_2-r_1)^2)
(1)
=2sqrt(r_1r_2).
(2)

Therefore, three equations follow from the condition that the labeled lengths must sum to the side lengths,

c=d_1+2sqrt(r_1r_2)+d_2
(3)
a=d_2+2sqrt(r_2r_3)+d_3
(4)
b=d_3+2sqrt(r_3r_1)+d_1.
(5)

Three additional equations follow from the fact that the circle centers lie on the corresponding angle bisectors of the triangle vertices, so

tan(1/2A)=(r_1)/(d_1)
(6)
tan(1/2B)=(r_2)/(d_2)
(7)
tan(1/2C)=(r_3)/(d_3).
(8)

Re-expressing these equations in terms of side lengths and rearranging and squaring to eliminate square roots then gives the system of six polynomial equations

4r_1r_2=(d_1+d_2-c)^2
(9)
4r_2r_3=(d_2+d_3-a)^2
(10)
4r_1r_3=(d_1+d_3-b)^2
(11)
2bc(d_1^2-r_1^2)=(d_1^2+r_1^2)(-a^2+b^2+c^2)
(12)
2ac(d_2^2-r_2^2)=(d_2^2+r_2^2)(a^2-b^2+c^2)
(13)
2ab(d_3^2-r_3^2)=(d_3^2+r_3^2)(a^2+b^2-c^2).
(14)

This system can be solved simultaneously for the radii and distances. The radius and position of the A-circle is given by appropriate roots of the complicated resulting polynomial

 f(a,b,c)=4096(a-b-c)^3(a+b+c)^2x^8+8192(a-b-c)^3(a+b-c)(a-b+c)(a+b+c)x^7+8192(a-b-c)^2(a+b-c)(a-b+c)(a^3+bca+b^3+c^3)x^6+1024(a-b-c)^2(a+b-c)^2(a-b+c)^2(5a^2+2ba+2ca+5b^2+5c^2+2bc)x^5+128(a-b-c)(a+b-c)^2(a-b+c)^2(17a^4-2b^2a^2-2c^2a^2+17b^4+17c^4-2b^2c^2)x^4+128(a-b-c)(a+b-c)^3(a-b+c)^3(5a^3+3ba^2+3ca^2+3b^2a+3c^2a-14bca+5b^3+5c^3+3bc^2+3b^2c)x^3+128(a+b-c)^3(a-b+c)^3(a^5-b^2a^3-c^2a^3-3bca^3-b^3a^2-c^3a^2+6bc^2a^2+6b^2ca^2-3bc^3a+6b^2c^2a-3b^3ca+b^5+c^5-b^2c^3-b^3c^2)x^2+16(a-b-c)(a+b-c)^5(a-b+c)^5(a+b+c)r_1+(a-b-c)(a+b-c)^6(a-b+c)^6.
(15)

In particular,

R_A=(f(a,b,c))_i
(16)
R_B=(f(b,c,a))_j
(17)
R_C=(f(c,a,b))_k
(18)

where (f)_i is a polynomial root, and the centers are given by

C_A=(sqrt((-a+b+c)(a+b-c)(a-b+c)(a+b+c)))/(2(f(a,b,c))_i)-(b+c):a:a
(19)
C_B=b:(sqrt((-a+b+c)(a+b-c)(a-b+c)(a+b+c)))/(2(f(b,c,a))_j)-(a+c):b
(20)
C_C=c:c:(sqrt((-a+b+c)(a+b-c)(a-b+c)(a+b+c)))/(2(f(c,a,b))_k)-(a+b).
(21)

Let the circles have radii r_1, r_2, and r_3. Then the inradius r of the triangle in which these circles are inscribed is given by

r=(sqrt(r_1r_2r_3)(sqrt(r_1)+sqrt(r_2)+sqrt(r_3)+sqrt(r_1+r_2+r_3)))/(sqrt(r_1r_2)+sqrt(r_2r_3)+sqrt(r_3r_1))
(22)
=(2sqrt(r_1r_2r_3))/(sqrt(r_1)+sqrt(r_2)+sqrt(r_3)-sqrt(r_1+r_2+r_3))
(23)

(Fukagawa and Pedoe 1989, p. 106).

Although these circles were for many years thought to provide the solutions to Malfatti's problem, they were subsequently shown never to provide the solution.


See also

Ajima-Malfatti Points, Apollonian Gasket, Malfatti's Problem, Malfatti Triangle, Marble Problem, Soddy Circles, Tangent Circles

Explore with Wolfram|Alpha

References

Bottema, O. "The Malfatti Problem." Forum Geom. 1, 43-50, 2001. http://forumgeom.fau.edu/FG2001volume1/FG200107index.html.Casey, J. A Sequel to the First Six Books of the Elements of Euclid, Containing an Easy Introduction to Modern Geometry with Numerous Examples, 5th ed., rev. enl. Dublin: Hodges, Figgis, & Co., pp. 154-155, 1888.Dörrie, H. "Malfatti's Problem." §30 in 100 Great Problems of Elementary Mathematics: Their History and Solutions. New York: Dover, pp. 147-151, 1965.Eves, H. A Survey of Geometry, rev. ed. Boston, MA: Allyn & Bacon, p. 245, 1965.F. Gabriel-Marie. Exercices de géométrie. Tours, France: Maison Mame, pp. 710-712, 1912.Forder, H. G. Higher Course Geometry. Cambridge, England: Cambridge University Press, pp. 244-245, 1931.Fukagawa, H. and Pedoe, D. "The Malfatti Problem." Japanese Temple Geometry Problems (San Gaku). Winnipeg: The Charles Babbage Research Centre, pp. 28 and 103-106, 1989.Gardner, M. Fractal Music, Hypercards, and More Mathematical Recreations from Scientific American Magazine. New York: W. H. Freeman, pp. 163-165, 1992.Goldberg, M. "On the Original Malfatti Problem." Math. Mag. 40, 241-247, 1967.Hart. Quart. J. 1, p. 219.Kimberling, C. "1st and 2nd Ajima-Malfatti Points." http://faculty.evansville.edu/ck6/tcenters/recent/ajmalf.html.Malfatti, G. "Memoria sopra un problema stereotomico." Memorie di matematica e fisica della Societé Italiana delle Scienze 10-1, 235-244, 1803.Martin, G. E. Geometric Constructions. New York: Springer-Verlag, pp. 92-95, 1998.Lob, H. and Richmond, H. W. "On the Solution of Malfatti's Problem for a Triangle." Proc. London Math. Soc. 2, 287-304, 1930.Ogilvy, C. S. Excursions in Geometry. New York: Dover, 1990.Oswald. Klassiker de exakten Wissenschaften, Vol. 23. Suppl.Rouché, E. and de Comberousse, C. Traité de géométrie plane. Paris: Gauthier-Villars, pp. 311-314, 1900.Rothman, T. "Japanese Temple Geometry." Sci. Amer. 278, 85-91, May 1998.Schellbach. J. reine angew. Math. 45.Stevanović, M. R. "Triangle Centers Associated with the Malfatti Circles." Forum Geom. 3, 83-93, 2003.van IJzeren, J. "De raakcirkels van Malfatti." Nieuw Tijdschr. Wisk. 65, 269-271, 1977-1978.Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, 1991.Woods, F. S. Higher Geometry: An Introduction to Advanced Methods in Analytic Geometry. New York: Dover, pp. 206-209, 1961.

Referenced on Wolfram|Alpha

Malfatti Circles

Cite this as:

Weisstein, Eric W. "Malfatti Circles." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/MalfattiCircles.html

Subject classifications