[go: up one dir, main page]

Skip to main content
Log in

Conjugacy in quasi-convex programming

  • Published:
Mathematical Programming Submit manuscript

Abstract

This paper develops a symmetric conjugate relation for quasi-convex functions. The concept of an evenly quasi-convex function is introduced and it is shown that this is the required property for a duality framework in quasi-convex programming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.P. Crouzeix, “Contributions a l'étude des functions quasiconvex”, Thesis, Université de Clermont II (France, 1977).

    Google Scholar 

  2. J.P. Crouzeix, “A duality framework in quasi convex programming”, in: S. Schaible and W.T. Ziemba, eds.,Generalized concavity in optimization and economics (Academic Press, New York, 1981) pp. 207–225.

    Google Scholar 

  3. J.P. Crouzeix, “Continuity and differentiability properties of quasiconvex functions on ℝ”, in: S. Schaible and W.T. Ziemba, eds.,Generalized concavity in optimization and economics (Academic Press, New York, 1981) pp. 109–130.

    Google Scholar 

  4. W. Fenchel, “Convex cones, sets and functions”, Lecture Notes, Princeton University (Princeton, NJ, 1951).

    Google Scholar 

  5. W. Fenchel, “A remark on convex sets and polarity”, Communication Seminar on Mathematics, University of Lung Supplementary Volume (University of Lund, Lund, 1952) 22–89.

  6. J. Flachs and M.A. Pollatschek, “Duality theorems for certain programs involving minimum or maximum operations,”Mathematical Programming 16 (1979) 348–370.

    Article  MATH  MathSciNet  Google Scholar 

  7. H.J. Greenberg and W.P. Pierskalla, “Quasi-conjugate functions and surrogate duality”,Cahiers due Center d'Etudes de Recherche Opérationnelle 15 (1973) 437–448.

    MATH  MathSciNet  Google Scholar 

  8. V.L. Klee, “Maximal separation theorem for convex sets”,Transactions of the American Mathematical Society 134 (1968) 133–148.

    Article  MATH  MathSciNet  Google Scholar 

  9. J.E. Martinez Legaz, “Exact quasiconvex conjugation”, Departmento de Educaciones Functionales. Universidad de Barcelona, Spain, presented at the 11th International Symposium on Mathematical Programming (Bonn, 1982).

  10. W. Oettli, “Optimality conditions involving generalized convex mappings”, in: S. Schaible and W.T. Ziemba, eds.,Generalized concavity in optimization and economics (Academic Press, New York, 1981) pp. 227–238.

    Google Scholar 

  11. E.Z. Prisman, “A new approach to duality Lagrangians and saddle functions in quasi convex programming”, Ph.D. Dissertation, Technion (Haifa, Israel, 1982) (in Hebrew).

    Google Scholar 

  12. R.T. Rockafellar,Convex analysis (Princeton University Press, Princeton, NJ, 1970).

    MATH  Google Scholar 

  13. I. Singer, “Pseudo-conjugate functionals and pseudo-duality”, in: Proceedings of the International Conference in Mathematical Methods in Operations Research Sofia (Publishing House of the Bulgarian Academy of Science, Sofia, 1980).

    Google Scholar 

  14. Y.I. Zabotin, A.I. Korablev and R.F. Khabibullin, “Conditions for an extremum of a functional in case of constraints”,Cybernetics 9 (1975) 982–988.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Passy, U., Prisman, E.Z. Conjugacy in quasi-convex programming. Mathematical Programming 30, 121–146 (1984). https://doi.org/10.1007/BF02591881

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02591881

Key words

Navigation