Communication Dans Un Congrès
Année : 2023
Résumé
Hierarchical Task Networks (HTNs) are a common formalism in automated planning. However, HTN models are mostly designed by hand by expert users. While many of the state-ofthe-art approaches for learning HTN try and learn the structure and its parameterization in a single step, other focus specifically on learning the structure of the model. Many of these structure-focused approaches, however, learn models with non-parameterized actions, task and methods, which limits their generalization capabilities. In this paper, we propose a constraint satisfaction-based approach for extracting parameters for a given HTN structure using a set of demonstration traces.
Domaines
Intelligence artificielle [cs.AI]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Philippe Hérail : Connectez-vous pour contacter le contributeur
https://laas.hal.science/hal-04174929
Soumis le : mardi 1 août 2023-15:49:59
Dernière modification le : lundi 20 novembre 2023-11:44:22
Archivage à long terme le : jeudi 2 novembre 2023-18:21:02
Dates et versions
- HAL Id : hal-04174929 , version 1
Citer
Philippe Hérail, Arthur Bit-Monnot. Extracting Hierarchical Task Networks Parameters from Demonstrations. ICAPS Hierarchical Planning Workshop (HPlan), Jul 2023, Prague, Czech Republic. ⟨hal-04174929⟩
Collections
57
Consultations
77
Téléchargements