Extracting Hierarchical Task Networks Parameters from Demonstrations - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes
[go: up one dir, main page]

Communication Dans Un Congrès Année : 2023
Extracting Hierarchical Task Networks Parameters from Demonstrations
1 LAAS-RIS - Équipe Robotique et InteractionS (France)
"> LAAS-RIS - Équipe Robotique et InteractionS
2 INSA Toulouse - Institut National des Sciences Appliquées - Toulouse (135, avenue de Rangueil - 31077 Toulouse cedex 4 - France)
"> INSA Toulouse - Institut National des Sciences Appliquées - Toulouse

Résumé

Hierarchical Task Networks (HTNs) are a common formalism in automated planning. However, HTN models are mostly designed by hand by expert users. While many of the state-ofthe-art approaches for learning HTN try and learn the structure and its parameterization in a single step, other focus specifically on learning the structure of the model. Many of these structure-focused approaches, however, learn models with non-parameterized actions, task and methods, which limits their generalization capabilities. In this paper, we propose a constraint satisfaction-based approach for extracting parameters for a given HTN structure using a set of demonstration traces.
Fichier principal
Vignette du fichier
2023-08-01_HAL.pdf (275.33 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04174929 , version 1 (01-08-2023)
Identifiants
  • HAL Id : hal-04174929 , version 1

Citer

Philippe Hérail, Arthur Bit-Monnot. Extracting Hierarchical Task Networks Parameters from Demonstrations. ICAPS Hierarchical Planning Workshop (HPlan), Jul 2023, Prague, Czech Republic. ⟨hal-04174929⟩
57 Consultations
77 Téléchargements

Partager

More