Simulation aided co-design for robust robot optimization - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes
[go: up one dir, main page]

Article Dans Une Revue IEEE Robotics and Automation Letters Année : 2022
Simulation aided co-design for robust robot optimization
1 LAAS-GEPETTO - Équipe Mouvement des Systèmes Anthropomorphes (France)
"> LAAS-GEPETTO - Équipe Mouvement des Systèmes Anthropomorphes
2 UNITN - Università degli Studi di Trento = University of Trento (via Calepina, 14 - I-38122 Trento - Italie)
"> UNITN - Università degli Studi di Trento = University of Trento
3 Dipartimento di Ingegneria Industriale [Trento] (via Sommarive, 9 - 38123 Trento - Italie)
"> Dipartimento di Ingegneria Industriale [Trento]

Résumé

This paper outlines a bi-level optimization method to concurrently optimize robot hardware parameters and control trajectories that ensure robust performance. The outer loop consists in a genetic algorithm that optimizes the hardware according to its average performance when tracking a locally optimal trajectory in perturbed simulations. The tracking controller exploits the locally optimal feedback gains computed in the inner loop with a Differential Dynamic Programming algorithm, which also finds the optimal reference trajectories. Our simulations feature a complete actuation model, including friction compensation and bandwidth limits. Our method can potentially account for arbitrary perturbations, and it discards hardware designs that cannot robustly track the reference trajectories. Our results show improved performance of the designed platform in realistic application scenarios, autonomously leading to the selection of lightweight and more transparent hardware.
Fichier principal
Vignette du fichier
Robust_co_design_RAL.pdf (2.38 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03592085 , version 1 (01-03-2022)
hal-03592085 , version 2 (29-07-2022)
hal-03592085 , version 3 (17-11-2022)
Identifiants

Citer

Gabriele Fadini, Thomas Flayols, Andrea del Prete, Philippe Souères. Simulation aided co-design for robust robot optimization. IEEE Robotics and Automation Letters, 2022, 7 (4), pp.11306 - 11313. ⟨10.1109/LRA.2022.3200142⟩. ⟨hal-03592085v3⟩
159 Consultations
375 Téléchargements

Altmetric

Partager

More