Numero congruente
In matematica un numero congruente è un numero naturale che rappresenta l'area di un triangolo rettangolo che ha per lati tre numeri razionali.
Il 5, per esempio, è un numero congruente, poiché è l'area di un triangolo rettangolo con lati di lunghezza:
La successione dei numeri congruenti inizia con:
- 5, 6, 7, 13, 14, 15, 20, 21, 22, 23, 24, 28, 29, 30, 31, 34, 37, 38, 39, 41, 45, 46, 47, 52, 53, 54, 55, 56, 60… (successione A003273 in OEIS).
Se è un numero congruente, allora è ancora congruente per ogni intero positivo (poiché si moltiplicano tutte le misure dei lati del triangolo per uno stesso numero).
Problema dei numeri congruenti
[modifica | modifica wikitesto]Un problema, che non ha ancora trovato una soluzione, è il seguente: dato un numero naturale stabilire se esso è congruente.
Il teorema di Tunnell fornisce un algoritmo per stabilire se un numero è congruente, tuttavia questo teorema si rifà alla congettura di Birch e Swinnerton-Dyer, che non è stata ancora dimostrata.
Il teorema di Fermat sui triangoli rettangoli, dal nome del matematico Pierre de Fermat, afferma che nessun quadrato perfetto può essere un numero congruente.
Note e riferimenti
[modifica | modifica wikitesto]- (EN) Sequenza A003273, su On-Line Encyclopedia of Integer Sequences, The OEIS Foundation.
- (EN) Brian Hayes, Congruent numbers, su Bit Player, 6 ottobre 2009. URL consultato il 10 giugno 2017.