[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/szg/worpap/9902.html
   My bibliography  Save this paper

Estimating Monthly GDP In A General Kalman Filter Framework: Evidence From Switzerland

Author

Listed:
Abstract
In this paper, we estimate deseasonalized monthly series for Swiss Gross Domestic Product at constant prices of 1990 for the period 1980-1998. They are consistent with the quarterly figures estimated by the Federal Office for Economic Development and Labour and are obtained by including information contained in related series. We present a general approach using the Kalman Filter technique nesting a great variety of interpolation setups. We evaluate competing models and provide a time series that can be used by other researchers.

Suggested Citation

  • Nicolas A. Cuche & Martin K. Hess, 1999. "Estimating Monthly GDP In A General Kalman Filter Framework: Evidence From Switzerland," Working Papers 99.02, Swiss National Bank, Study Center Gerzensee.
  • Handle: RePEc:szg:worpap:9902
    as

    Download full text from publisher

    File URL: http://www.szgerzensee.ch/fileadmin/Dateien_Anwender/Dokumente/working_papers/wp-9902.pdf
    File Function: Full text
    Download Restriction: None
    ---><---

    References listed on IDEAS

    as
    1. Litterman, Robert B, 1983. "A Random Walk, Markov Model for the Distribution of Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(2), pages 169-173, April.
    2. Milton Friedman, 1962. "The Interpolation of Time Series by Related Series," NBER Books, National Bureau of Economic Research, Inc, number frie62-1.
    3. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    4. Amemiya, Takeshi, 1980. "Selection of Regressors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 21(2), pages 331-354, June.
    5. Fernandez, Roque B, 1981. "A Methodological Note on the Estimation of Time Series," The Review of Economics and Statistics, MIT Press, vol. 63(3), pages 471-476, August.
    6. Leamer, Edward E., 1983. "Model choice and specification analysis," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 1, chapter 5, pages 285-330, Elsevier.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. João Victor Issler & Hilton Hostalacio Notini & Claudia Fontoura Rodrigues, 2013. "Constructing coincident and leading indices of economic activity for the Brazilian economy," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2012(2), pages 43-65.
    2. Rocio Elizondo, 2019. "Estimaciones del PIB mensual en México basadas en el IGAE/Monthly GDP estimates in Mexico based on the IGAE," Estudios Económicos, El Colegio de México, Centro de Estudios Económicos, vol. 34(2), pages 197-241.
    3. Hess, Martin K., 2004. "Dynamic and asymmetric impacts of macroeconomic fundamentals on an integrated stock market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 14(5), pages 455-471, December.
    4. Byeongchan Seong & Sung K. Ahn & Peter Zadrozny, 2007. "Cointegration Analysis with Mixed-Frequency Data," CESifo Working Paper Series 1939, CESifo.
    5. Konstantins Benkovskis, 2008. "Short-Term Forecasts of Latvia's Real Gross Domestic Product Growth Using Monthly Indicators," Working Papers 2008/05, Latvijas Banka.
    6. Harris Dellas & Martin K. Hess, 2002. "Financial Development and the Sensitivity of Stock Markets to External Influences," Review of International Economics, Wiley Blackwell, vol. 10(3), pages 525-538, August.
    7. Dr. Jonas Stulz, 2007. "Exchange rate pass-through in Switzerland: Evidence from vector autoregressions," Economic Studies 2007-04, Swiss National Bank.
    8. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2015. "Wave function method to forecast foreign currencies exchange rates at ultra high frequency electronic trading in foreign currencies exchange markets," MPRA Paper 67470, University Library of Munich, Germany.
    9. International Monetary Fund, 2002. "Macroeconomic Adjustment in a Highly Dollarized Economy: The Case of Cambodia," IMF Working Papers 2002/092, International Monetary Fund.
    10. Issler, João Victor & Notini, Hilton Hostalacio, 2016. "Estimating Brazilian Monthly GDP: a State-Space Approach," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 70(1), March.
    11. Yueqing Jia, 2011. "A New Look at China’s Output Fluctuations: Quarterly GDP Estimation with an Unobserved Components Approach," Working Papers 2011-006, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    12. Éva Gyurkovics & Tibor Takács, 2023. "Estimation of the potential GDP by a new robust filter method," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(4), pages 1183-1207, December.
    13. Works, Richard Floyd, 2016. "Econometric modeling of exchange rate determinants by market classification: An empirical analysis of Japan and South Korea using the sticky-price monetary theory," MPRA Paper 76382, University Library of Munich, Germany.
    14. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2013. "On the Stratonovich – Kalman - Bucy filtering algorithm application for accurate characterization of financial time series with use of state-space model by central banks," MPRA Paper 50235, University Library of Munich, Germany.
    15. Alexander Perruchoud, 2009. "Estimating a Taylor Rule with Markov Switching Regimes for Switzerland," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 145(II), pages 187-220, June.
    16. Elizondo Rocío, 2012. "Monthly GDP estimates based on the IGAE," Working Papers 2012-11, Banco de México.
    17. Eurilton Araujo, 2006. "Estimating and Testing Two Consumption-Based Asset Pricing Models for Brazil: An Information-Theoretic Approach," Brazilian Business Review, Fucape Business School, vol. 3(1), pages 1-14, January.
    18. Works, Richard & Haan, Perry, 2017. "An Empirical Study of Japanese and South Korean Exchange Rates Using the Sticky-Price Monetary Theory," MPRA Paper 77235, University Library of Munich, Germany.
    19. Burak Sencer Atasoy & Timur Han Gür, 2016. "Does the Wagner’s Hypothesis Hold for China? Evidence from Static and Dynamic Analyses," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 63(1), pages 45-60, March.
    20. Ureche-Rangau, Loredana & Burietz, Aurore, 2013. "One crisis, two crises…the subprime crisis and the European sovereign debt problems," Economic Modelling, Elsevier, vol. 35(C), pages 35-44.
    21. Gyurkovics, Éva & Takács, Tibor, 2022. "Robust energy-to-peak filter design for a class of unstable polytopic systems with a macroeconomic application," Applied Mathematics and Computation, Elsevier, vol. 420(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2015. "Wave function method to forecast foreign currencies exchange rates at ultra high frequency electronic trading in foreign currencies exchange markets," MPRA Paper 67470, University Library of Munich, Germany.
    2. Bernardí Cabred & Jose Pavía, 1999. "EstimatingJ (>1) quarterly time series in fulfilling annual and quarterly constraints," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 5(3), pages 339-349, August.
    3. Wolfgang Polasek & Richard Sellner, 2008. "Spatial Chow-Lin Methods: Bayesian And Ml Forecast Comparisons," Working Paper series 38_08, Rimini Centre for Economic Analysis.
    4. Huang, Yu-Lieh, 2012. "Measuring business cycles: A temporal disaggregation model with regime switching," Economic Modelling, Elsevier, vol. 29(2), pages 283-290.
    5. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2013. "On the Stratonovich – Kalman - Bucy filtering algorithm application for accurate characterization of financial time series with use of state-space model by central banks," MPRA Paper 50235, University Library of Munich, Germany.
    6. He, Yiming & Fullerton, Thomas M. & Walke, Adam G., 2017. "Electricity consumption and metropolitan economic performance in Guangzhou: 1950–2013," Energy Economics, Elsevier, vol. 63(C), pages 154-160.
    7. Vladim r Hajko, 2015. "Energy-Gross Domestic Product Nexus: Disaggregated Analysis for the Czech Republic in the Post-Transformation Era," International Journal of Energy Economics and Policy, Econjournals, vol. 5(3), pages 869-888.
    8. Enrique M. Quilis, 2018. "Temporal disaggregation of economic time series: The view from the trenches," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(4), pages 447-470, November.
    9. Fullerton, Thomas M., Jr. & Ceballos, Alejandro & Walke, Adam G., 2015. "Short-Term Forecasting Analysis for Municipal Water Demand," MPRA Paper 78259, University Library of Munich, Germany, revised 04 Aug 2015.
    10. Jonathan Eaton & Samuel Kortum & Brent Neiman & John Romalis, 2016. "Trade and the Global Recession," American Economic Review, American Economic Association, vol. 106(11), pages 3401-3438, November.
    11. Massimo Gerli & Giovanni Marini, 2006. "Spatial and Temporal Time Series Conversion: A Consistent Estimator of the Error Variance-Covariance Matrix," Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2005(3), pages 373-405.
    12. Vosen, Simeon & Schmidt, Torsten, 2012. "A monthly consumption indicator for Germany based on Internet search query data," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 19(7), pages 683-687.
    13. Litterman, Robert B, 1983. "A Random Walk, Markov Model for the Distribution of Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(2), pages 169-173, April.
    14. Kim Abildgren, 2016. "A century of macro-financial linkages," Journal of Financial Economic Policy, Emerald Group Publishing Limited, vol. 8(4), pages 458-471, November.
    15. Tommaso Proietti, 2006. "Temporal disaggregation by state space methods: Dynamic regression methods revisited," Econometrics Journal, Royal Economic Society, vol. 9(3), pages 357-372, November.
    16. Richard M. Todd, 1988. "Implementing Bayesian vector autoregressions," Working Papers 384, Federal Reserve Bank of Minneapolis.
    17. Nijman, Theo E & Palm, Franz C, 1990. "Predictive Accuracy Gain from Disaggregate Sampling in ARIMA Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(4), pages 405-415, October.
    18. Pieroni, Luca & d'Agostino, Giorgio & Lorusso, Marco, 2008. "Can we declare military Keynesianism dead?," Journal of Policy Modeling, Elsevier, vol. 30(5), pages 675-691.
    19. Mr. Marco Marini, 2016. "Nowcasting Annual National Accounts with Quarterly Indicators: An Assessment of Widely Used Benchmarking Methods," IMF Working Papers 2016/071, International Monetary Fund.
    20. Cuevas Ángel & Quilis Enrique M. & Espasa Antoni, 2015. "Quarterly Regional GDP Flash Estimates by Means of Benchmarking and Chain Linking," Journal of Official Statistics, Sciendo, vol. 31(4), pages 627-647, December.

    More about this item

    Keywords

    Interpolation; Kalman filter; National accounting.;
    All these keywords.

    JEL classification:

    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:szg:worpap:9902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: library (email available below). General contact details of provider: https://szgerzensee.ch/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.