[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/sfu/sfudps/dp96-08.html
   My bibliography  Save this paper

Combining Qualitative Forecasts Using Logit

Author

Listed:
  • Kamastra, M
  • Kennedy, P
Abstract
This paper introduces a computationally-convenient means of combining qualitative forecasts, through use of logit regression, applicable in dichotomous, polychotomous and ordered poluchotomous contexts.

Suggested Citation

  • Kamastra, M & Kennedy, P, 1996. "Combining Qualitative Forecasts Using Logit," Discussion Papers dp96-08, Department of Economics, Simon Fraser University.
  • Handle: RePEc:sfu:sfudps:dp96-08
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fair, Ray C & Shiller, Robert J, 1990. "Comparing Information in Forecasts from Econometric Models," American Economic Review, American Economic Association, vol. 80(3), pages 375-389, June.
    2. Heejoon Kang, 1986. "Unstable Weights in the Combination of Forecasts," Management Science, INFORMS, vol. 32(6), pages 683-695, June.
    3. Winkler, Robert L., 1989. "Combining forecasts: A philosophical basis and some current issues," International Journal of Forecasting, Elsevier, vol. 5(4), pages 605-609.
    4. Peter M. Feather & Michael S. Kaylen, 1989. "Conditional Qualitative Forecasting," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 71(1), pages 195-201.
    5. Dewispelare, Aaron R. & Herren, L. Tandy & Clemen, Robert T., 1995. "The use of probability elicitation in the high-level nuclear waste regulation program," International Journal of Forecasting, Elsevier, vol. 11(1), pages 5-24, March.
    6. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    7. Robert C. Blattberg & Stephen J. Hoch, 1990. "Database Models and Managerial Intuition: 50% Model + 50% Manager," Management Science, INFORMS, vol. 36(8), pages 887-899, August.
    8. David C. Schmittlein & Jinho Kim & Donald G. Morrison, 1990. "Combining Forecasts: Operational Adjustments to Theoretically Optimal Rules," Management Science, INFORMS, vol. 36(9), pages 1044-1056, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael P. Clements & David I. Harvey, 2010. "Forecast encompassing tests and probability forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(6), pages 1028-1062.
    2. Rodrigues, Bruno Dore & Stevenson, Maxwell J., 2013. "Takeover prediction using forecast combinations," International Journal of Forecasting, Elsevier, vol. 29(4), pages 628-641.
    3. Bastianin, Andrea & Galeotti, Marzio & Manera, Matteo, 2014. "Forecasting the oil–gasoline price relationship: Do asymmetries help?," Energy Economics, Elsevier, vol. 46(S1), pages 44-56.
    4. Caporale, Guglielmo Maria & Matousek, Roman & Stewart, Chris, 2012. "Ratings assignments: Lessons from international banks," Journal of International Money and Finance, Elsevier, vol. 31(6), pages 1593-1606.
    5. Basnet, Anup & Davis, Frederick & Walker, Thomas & Zhao, Kun, 2021. "The effect of securities class action lawsuits on mergers and acquisitions," Global Finance Journal, Elsevier, vol. 48(C).
    6. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    7. Lahiri Kajal & Yang Liu, 2016. "A non-linear forecast combination procedure for binary outcomes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(4), pages 421-440, September.
    8. Lewis Gaul & Jonathan Jones & Pinar Uysal, 2019. "Forecasting High-Risk Composite CAMELS Ratings," International Finance Discussion Papers 1252, Board of Governors of the Federal Reserve System (U.S.).
    9. Ana-Maria Fuertes & Elena Kalotychou, 2004. "Elements in the Design of an Early Warning System for Sovereign Default," Computing in Economics and Finance 2004 231, Society for Computational Economics.
    10. Clements, Michael P. & Harvey, David I., 2011. "Combining probability forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 208-223, April.
    11. Salvador, Carlos & Pastor, Jose Manuel & Fernández de Guevara, Juan, 2014. "Impact of the subprime crisis on bank ratings: The effect of the hardening of rating policies and worsening of solvency," Journal of Financial Stability, Elsevier, vol. 11(C), pages 13-31.
    12. Jan G. de Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Tinbergen Institute Discussion Papers 05-068/4, Tinbergen Institute.
    13. Pauwels, Laurent & Vasnev, Andrey, 2014. "Forecast combination for U.S. recessions with real-time data," The North American Journal of Economics and Finance, Elsevier, vol. 28(C), pages 138-148.
    14. Fuertes, Ana-Maria & Kalotychou, Elena, 2007. "Optimal design of early warning systems for sovereign debt crises," International Journal of Forecasting, Elsevier, vol. 23(1), pages 85-100.
    15. Laurent L. Pauwels & Andrey L. Vasnev, 2017. "Forecast combination for discrete choice models: predicting FOMC monetary policy decisions," Empirical Economics, Springer, vol. 52(1), pages 229-254, February.
    16. Giovanni De Luca & Alfonso Carfora, 2014. "Predicting U.S. recessions through a combination of probability forecasts," Empirical Economics, Springer, vol. 46(1), pages 127-144, February.
    17. Xiao, Liye & Wang, Jianzhou & Hou, Ru & Wu, Jie, 2015. "A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting," Energy, Elsevier, vol. 82(C), pages 524-549.
    18. Kajal Lahiri & Liu Yang, 2023. "Predicting binary outcomes based on the pair-copula construction," Empirical Economics, Springer, vol. 64(6), pages 3089-3119, June.
    19. Enrique Moral-Benito, 2015. "Model Averaging In Economics: An Overview," Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 46-75, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196, Elsevier.
    2. Armstrong, J. Scott & Morwitz, Vicki G. & Kumar, V., 2000. "Sales forecasts for existing consumer products and services: Do purchase intentions contribute to accuracy?," International Journal of Forecasting, Elsevier, vol. 16(3), pages 383-397.
    3. Bacci, Livio Agnew & Mello, Luiz Gustavo & Incerti, Taynara & Paulo de Paiva, Anderson & Balestrassi, Pedro Paulo, 2019. "Optimization of combined time series methods to forecast the demand for coffee in Brazil: A new approach using Normal Boundary Intersection coupled with mixture designs of experiments and rotated fact," International Journal of Production Economics, Elsevier, vol. 212(C), pages 186-211.
    4. Keunkwan Ryu & Kuo-yuan Liang, 1992. "Relationship of Forecast Encompassing to Composite Forecasts with Simulations and an Application," UCLA Economics Working Papers 668, UCLA Department of Economics.
    5. Blanc, Sebastian M. & Setzer, Thomas, 2016. "When to choose the simple average in forecast combination," Journal of Business Research, Elsevier, vol. 69(10), pages 3951-3962.
    6. Webby, Richard & O'Connor, Marcus, 1996. "Judgemental and statistical time series forecasting: a review of the literature," International Journal of Forecasting, Elsevier, vol. 12(1), pages 91-118, March.
    7. Zhenni Ding & Huayou Chen & Ligang Zhou, 2023. "Using shapely values to define subgroups of forecasts for combining," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 905-923, July.
    8. Blattenberger, Gail & Fowles, Richard, 1995. "Road closure to mitigate avalanche danger: a case study for Little Cottonwood Canyon," International Journal of Forecasting, Elsevier, vol. 11(1), pages 159-174, March.
    9. P. J. Lamberson & Scott E. Page, 2012. "Optimal Forecasting Groups," Management Science, INFORMS, vol. 58(4), pages 805-810, April.
    10. de Menezes, Lilian M. & W. Bunn, Derek & Taylor, James W., 2000. "Review of guidelines for the use of combined forecasts," European Journal of Operational Research, Elsevier, vol. 120(1), pages 190-204, January.
    11. Elkin Castaño & Luis Fernando Melo, 1998. "Métodos de Combinación de Pronósticos: Una Aplicación a la Inflación Colombiana," Borradores de Economia 109, Banco de la Republica de Colombia.
    12. Katja Heinisch & Rolf Scheufele, 2018. "Bottom-up or direct? Forecasting German GDP in a data-rich environment," Empirical Economics, Springer, vol. 54(2), pages 705-745, March.
    13. Robert L. Winkler & Robert T. Clemen, 2004. "Multiple Experts vs. Multiple Methods: Combining Correlation Assessments," Decision Analysis, INFORMS, vol. 1(3), pages 167-176, September.
    14. Clements, Michael P. & Harvey, David I., 2011. "Combining probability forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 208-223.
    15. West, Kenneth D., 2001. "Encompassing tests when no model is encompassing," Journal of Econometrics, Elsevier, vol. 105(1), pages 287-308, November.
    16. Wilson, Kevin J., 2017. "An investigation of dependence in expert judgement studies with multiple experts," International Journal of Forecasting, Elsevier, vol. 33(1), pages 325-336.
    17. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    18. Francis X. Diebold & Jose A. Lopez, 1995. "Forecast evaluation and combination," Research Paper 9525, Federal Reserve Bank of New York.
    19. Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
    20. Goodwin, P., 1996. "Statistical correction of judgmental point forecasts and decisions," Omega, Elsevier, vol. 24(5), pages 551-559, October.

    More about this item

    Keywords

    FORECASTS;

    JEL classification:

    • F47 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sfu:sfudps:dp96-08. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Working Paper Coordinator (email available below). General contact details of provider: https://edirc.repec.org/data/desfuca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.