[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/sgh/kaewps/2019042.html
   My bibliography  Save this paper

The Hardware-Software Model: A New Conceptual Framework of Production, R&D, and Growth with AI

Author

Listed:
  • Jakub Growiec
Abstract
The article proposes a new conceptual framework for capturing production, R&D, and economic growth in aggregative models which extend their horizon into the digital era. Two key factors of production are considered: hardware, including physical labor, traditional physical capital and programmable hardware, and software, encompassing human cognitive work, pre-programmed software, and artificial intelligence (AI). Hardware and software are complementary in production whereas their constituent components are mutually substitutable. The framework generalizes, among others, the standard model of production with capital and labor, models with capital–skill complementarity and skill-biased technical change, and unified growth theories embracing also the pre-industrial period. It offers a clear conceptual distinction between mechanization and automation as well as between robotization and the development of AI. It delivers sharp, economically intuitive predictions for long-run growth, the evolution of factor shares, and the direction of technical change

Suggested Citation

  • Jakub Growiec, 2019. "The Hardware-Software Model: A New Conceptual Framework of Production, R&D, and Growth with AI," KAE Working Papers 2019-042, Warsaw School of Economics, Collegium of Economic Analysis.
  • Handle: RePEc:sgh:kaewps:2019042
    as

    Download full text from publisher

    File URL: http://kolegia.sgh.waw.pl/pl/KAE/Documents/WorkingPapersKAE/WPKAE_2019_042.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Romer, Paul M, 1986. "Increasing Returns and Long-run Growth," Journal of Political Economy, University of Chicago Press, vol. 94(5), pages 1002-1037, October.
    2. Bresnahan, Timothy F. & Trajtenberg, M., 1995. "General purpose technologies 'Engines of growth'?," Journal of Econometrics, Elsevier, vol. 65(1), pages 83-108, January.
    3. Robert J. Gordon, 2016. "The Rise and Fall of American Growth: The U.S. Standard of Living since the Civil War," Economics Books, Princeton University Press, edition 1, number 10544.
    4. Benjamin F. Jones, 2009. "The Burden of Knowledge and the "Death of the Renaissance Man": Is Innovation Getting Harder?," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(1), pages 283-317.
    5. Nicholas Bloom & Charles I. Jones & John Van Reenen & Michael Webb, 2020. "Are Ideas Getting Harder to Find?," American Economic Review, American Economic Association, vol. 110(4), pages 1104-1144, April.
    6. repec:ucp:bknber:9780226304557 is not listed on IDEAS
    7. Growiec, Jakub, 2018. "Factor-specific technology choice," Journal of Mathematical Economics, Elsevier, vol. 77(C), pages 1-14.
    8. Jakub Growiec & Ingmar Schumacher, 2013. "Technological opportunity, long-run growth, and convergence," Oxford Economic Papers, Oxford University Press, vol. 65(2), pages 323-351, April.
    9. Georg Graetz & Guy Michaels, 2018. "Robots at Work," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 753-768, December.
    10. Melanie Arntz & Terry Gregory & Ulrich Zierahn, 2016. "The Risk of Automation for Jobs in OECD Countries: A Comparative Analysis," OECD Social, Employment and Migration Working Papers 189, OECD Publishing.
    11. Miguel A. León-Ledesma & Peter McAdam & Alpo Willman, 2010. "Identifying the Elasticity of Substitution with Biased Technical Change," American Economic Review, American Economic Association, vol. 100(4), pages 1330-1357, September.
    12. David Autor & David Dorn & Lawrence F Katz & Christina Patterson & John Van Reenen, 2020. "The Fall of the Labor Share and the Rise of Superstar Firms [“Automation and New Tasks: How Technology Displaces and Reinstates Labor”]," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 135(2), pages 645-709.
    13. Robert M. Solow, 1956. "A Contribution to the Theory of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 70(1), pages 65-94.
    14. Brent Neiman, 2014. "The Global Decline of the Labor Share," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 129(1), pages 61-103.
    15. Growiec, Jakub & Mućk, Jakub, 2020. "Isoelastic Elasticity Of Substitution Production Functions," Macroeconomic Dynamics, Cambridge University Press, vol. 24(7), pages 1597-1634, October.
    16. Ajay Agrawal & Joshua Gans & Avi Goldfarb, 2019. "The Economics of Artificial Intelligence: An Agenda," NBER Books, National Bureau of Economic Research, Inc, number agra-1.
    17. Aum, Sangmin & Lee, Sang Yoon (Tim) & Shin, Yongseok, 2018. "Computerizing industries and routinizing jobs: Explaining trends in aggregate productivity," Journal of Monetary Economics, Elsevier, vol. 97(C), pages 1-21.
    18. Thomas Piketty & Gabriel Zucman, 2014. "Capital is Back: Wealth-Income Ratios in Rich Countries 1700–2010," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 129(3), pages 1255-1310.
    19. Galor, Oded, 2005. "From Stagnation to Growth: Unified Growth Theory," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 4, pages 171-293, Elsevier.
    20. N. Gregory Mankiw & David Romer & David N. Weil, 1992. "A Contribution to the Empirics of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(2), pages 407-437.
    21. Growiec, Jakub, 2010. "Human Capital, Aggregation, And Growth," Macroeconomic Dynamics, Cambridge University Press, vol. 14(2), pages 189-211, April.
    22. Charles I. Jones & Jihee Kim, 2018. "A Schumpeterian Model of Top Income Inequality," Journal of Political Economy, University of Chicago Press, vol. 126(5), pages 1785-1826.
    23. Frey, Carl Benedikt & Osborne, Michael A., 2017. "The future of employment: How susceptible are jobs to computerisation?," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 254-280.
    24. Oded Galor & Omer Moav, 2006. "Das Human-Kapital: A Theory of the Demise of the Class Structure," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 73(1), pages 85-117.
    25. L. R. Klein & R. F. Kosobud, 1961. "Some Econometrics of Growth: Great Ratios of Economics," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 75(2), pages 173-198.
    26. Francisco L. Rivera-Batiz & Luis A. Rivera-Batiz, 2018. "Economic Integration and Endogenous Growth," World Scientific Book Chapters, in: Francisco L Rivera-Batiz & Luis A Rivera-Batiz (ed.), International Trade, Capital Flows and Economic Development, chapter 1, pages 3-32, World Scientific Publishing Co. Pte. Ltd..
    27. Ola Olsson, 2005. "Technological Opportunity and Growth," Journal of Economic Growth, Springer, vol. 10(1), pages 31-53, January.
    28. Philippe Aghion & Benjamin F. Jones & Charles I. Jones, 2018. "Artificial Intelligence and Economic Growth," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 237-282, National Bureau of Economic Research, Inc.
    29. Seth G. Benzell & Laurence J. Kotlikoff & Guillermo LaGarda & Jeffrey D. Sachs, 2015. "Robots Are Us: Some Economics of Human Replacement," NBER Working Papers 20941, National Bureau of Economic Research, Inc.
    30. Peter K. Kruse-Andersen, 2017. "Testing R&D-Based Endogenous Growth Models," Discussion Papers 17-05, University of Copenhagen. Department of Economics.
    31. Dale W. Jorgenson, 1995. "Productivity, Volume 1: Postwar US Economic Growth," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100495, April.
    32. McAdam, Peter & Willman, Alpo, 2018. "Unraveling The Skill Premium," Macroeconomic Dynamics, Cambridge University Press, vol. 22(1), pages 33-62, January.
    33. Acemoglu, Daron & Autor, David, 2011. "Skills, Tasks and Technologies: Implications for Employment and Earnings," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 12, pages 1043-1171, Elsevier.
    34. Charles I. Jones & Paul M. Romer, 2010. "The New Kaldor Facts: Ideas, Institutions, Population, and Human Capital," American Economic Journal: Macroeconomics, American Economic Association, vol. 2(1), pages 224-245, January.
    35. Berg, Andrew & Buffie, Edward F. & Zanna, Luis-Felipe, 2018. "Should we fear the robot revolution? (The correct answer is yes)," Journal of Monetary Economics, Elsevier, vol. 97(C), pages 117-148.
    36. Daron Acemoglu & Pascual Restrepo, 2018. "The Race between Man and Machine: Implications of Technology for Growth, Factor Shares, and Employment," American Economic Review, American Economic Association, vol. 108(6), pages 1488-1542, June.
    37. Jakob Madsen, 2008. "Semi-endogenous versus Schumpeterian growth models: testing the knowledge production function using international data," Journal of Economic Growth, Springer, vol. 13(1), pages 1-26, March.
    38. H. Uzawa, 1961. "Neutral Inventions and the Stability of Growth Equilibrium," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 28(2), pages 117-124.
    39. Alfonso Arpaia & Esther Pérez & Karl Pichelmann, 2009. "Understanding Labour Income Share Dynamics in Europe," European Economy - Economic Papers 2008 - 2015 379, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    40. Seth G. Benzell & Laurence J. Kotlikoff & Guillermo LaGarda & Jeffrey D. Sachs, 2015. "Robots Are Us: Some Economics of Human Replacement," NBER Working Papers 20941, National Bureau of Economic Research, Inc.
    41. Erik Brynjolfsson & Daniel Rock & Chad Syverson, 2018. "Artificial Intelligence and the Modern Productivity Paradox: A Clash of Expectations and Statistics," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 23-57, National Bureau of Economic Research, Inc.
    42. Daron Acemoglu, 2003. "Labor- And Capital-Augmenting Technical Change," Journal of the European Economic Association, MIT Press, vol. 1(1), pages 1-37, March.
    43. Greenwood, Jeremy & Hercowitz, Zvi & Krusell, Per, 1997. "Long-Run Implications of Investment-Specific Technological Change," American Economic Review, American Economic Association, vol. 87(3), pages 342-362, June.
    44. Mr. Federico J Diez & Mr. Daniel Leigh & Suchanan Tambunlertchai, 2018. "Global Market Power and its Macroeconomic Implications," IMF Working Papers 2018/137, International Monetary Fund.
    45. Jones, Charles I, 1995. "R&D-Based Models of Economic Growth," Journal of Political Economy, University of Chicago Press, vol. 103(4), pages 759-784, August.
    46. Robert J. Gordon, 1990. "The Measurement of Durable Goods Prices," NBER Books, National Bureau of Economic Research, Inc, number gord90-1.
    47. David N. Weil & Oded Galor, 2000. "Population, Technology, and Growth: From Malthusian Stagnation to the Demographic Transition and Beyond," American Economic Review, American Economic Association, vol. 90(4), pages 806-828, September.
    48. Jan De Loecker & Jan Eeckhout & Gabriel Unger, 2020. "The Rise of Market Power and the Macroeconomic Implications [“Econometric Tools for Analyzing Market Outcomes”]," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 135(2), pages 561-644.
    49. Subodh Kumar & R. Robert Russell, 2002. "Technological Change, Technological Catch-up, and Capital Deepening: Relative Contributions to Growth and Convergence," American Economic Review, American Economic Association, vol. 92(3), pages 527-548, June.
    50. Joonkyung Ha & Peter Howitt, 2007. "Accounting for Trends in Productivity and R&D: A Schumpeterian Critique of Semi-Endogenous Growth Theory," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(4), pages 733-774, June.
    51. Jonathan Temple, 2006. "Aggregate Production Functions and Growth Economics," International Review of Applied Economics, Taylor & Francis Journals, vol. 20(3), pages 301-317.
    52. Daniel J. Henderson & R. Robert Russell, 2005. "Human Capital And Convergence: A Production-Frontier Approach ," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 46(4), pages 1167-1205, November.
    53. Olsson, Ola, 2000. "Knowledge as a Set in Idea Space: An Epistemological View on Growth," Journal of Economic Growth, Springer, vol. 5(3), pages 253-275, September.
    54. Jakub Growiec, 2012. "The World Technology Frontier: What Can We Learn from the US States?-super-," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(6), pages 777-807, December.
    55. Agrawal, Ajay & Gans, Joshua & Goldfarb, Avi (ed.), 2019. "The Economics of Artificial Intelligence," National Bureau of Economic Research Books, University of Chicago Press, number 9780226613338, September.
    56. F. A. Lutz, 1961. "The Theory of Capital," International Economic Association Series, Palgrave Macmillan, number 978-1-349-08452-4 edited by D. C. Hague, December.
    57. Jakub Mućk, 2017. "Elasticity of substitution between labor and capital: robust evidence from developed economies," EcoMod2017 10433, EcoMod.
    58. Francesco Caselli & Wilbur John Coleman II, 2006. "The World Technology Frontier," American Economic Review, American Economic Association, vol. 96(3), pages 499-522, June.
    59. Klump, Rainer & McAdam, Peter & Willman, Alpo, 2004. "Factor substitution and factor augmenting technical progress in the US: a normalized supply-side system approach," Working Paper Series 367, European Central Bank.
    60. Jeffrey D. Sachs & Seth G. Benzell & Guillermo LaGarda, 2015. "Robots: Curse or Blessing? A Basic Framework," NBER Working Papers 21091, National Bureau of Economic Research, Inc.
    61. Larry E. Jones & Rodolfo Manuelli, 1990. "A Convex Model of Equilibrium Growth," NBER Working Papers 3241, National Bureau of Economic Research, Inc.
    62. Gary Koop & Jacek Osiewalski & Mark F. J. Steel, 1999. "The Components of Output Growth: A Stochastic Frontier Analysis," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(4), pages 455-487, November.
    63. Jones, Larry E & Manuelli, Rodolfo E, 1990. "A Convex Model of Equilibrium Growth: Theory and Policy Implications," Journal of Political Economy, University of Chicago Press, vol. 98(5), pages 1008-1038, October.
    64. Nicholas Kaldor, 1961. "Capital Accumulation and Economic Growth," International Economic Association Series, in: D. C. Hague (ed.), The Theory of Capital, chapter 0, pages 177-222, Palgrave Macmillan.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jakub Growiec, 2020. "What Will Drive Long-Run Growth in the Digital Age?," KAE Working Papers 2020-054, Warsaw School of Economics, Collegium of Economic Analysis.
    2. Growiec, Jakub, 2022. "Automation, Partial And Full," Macroeconomic Dynamics, Cambridge University Press, vol. 26(7), pages 1731-1755, October.
    3. Gasteiger, Emanuel & Prettner, Klaus, 2022. "Automation, Stagnation, And The Implications Of A Robot Tax," Macroeconomic Dynamics, Cambridge University Press, vol. 26(1), pages 218-249, January.
    4. Jakub Growiec & Peter McAdam & Jakub Mućk, 2022. "Are Ideas Really Getting Harder To Find? R&D Capital and the Idea Production Function," KAE Working Papers 2022-071, Warsaw School of Economics, Collegium of Economic Analysis.
    5. Parteka, Aleksandra & Kordalska, Aleksandra, 2023. "Artificial intelligence and productivity: global evidence from AI patent and bibliometric data," Technovation, Elsevier, vol. 125(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jakub Growiec, 2018. "The Digital Era, Viewed From a Perspective of Millennia of Economic Growth," KAE Working Papers 2018-034, Warsaw School of Economics, Collegium of Economic Analysis.
    2. Jakub Growiec, 2020. "What Will Drive Long-Run Growth in the Digital Age?," KAE Working Papers 2020-054, Warsaw School of Economics, Collegium of Economic Analysis.
    3. Growiec, Jakub, 2022. "Automation, Partial And Full," Macroeconomic Dynamics, Cambridge University Press, vol. 26(7), pages 1731-1755, October.
    4. Naude, Wim, 2019. "The race against the robots and the fallacy of the giant cheesecake: Immediate and imagined impacts of artificial intelligence," MERIT Working Papers 2019-005, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    5. Jones, C.I., 2016. "The Facts of Economic Growth," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 3-69, Elsevier.
    6. Jakub Growiec, 2023. "Industry 4.0? Framing the Digital Revolution and Its Long-Run Growth Consequences," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 4, pages 1-16.
    7. Gregory Casey & Ryo Horii, 2019. "A Multi-factor Uzawa Growth Theorem and Endogenous Capital-Augmenting Technological Change," ISER Discussion Paper 1051, Institute of Social and Economic Research, Osaka University.
    8. Mr. Andrew Berg & Lahcen Bounader & Nikolay Gueorguiev & Hiroaki Miyamoto & Mr. Kenji Moriyama & Ryota Nakatani & Luis-Felipe Zanna, 2021. "For the Benefit of All: Fiscal Policies and Equity-Efficiency Trade-offs in the Age of Automation," IMF Working Papers 2021/187, International Monetary Fund.
    9. Basso, Henrique S. & Jimeno, Juan F., 2021. "From secular stagnation to robocalypse? Implications of demographic and technological changes," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 833-847.
    10. Guimarães, Luís & Mazeda Gil, Pedro, 2022. "Explaining the Labor Share: Automation Vs Labor Market Institutions," Labour Economics, Elsevier, vol. 75(C).
    11. Jakub Growiec & Peter McAdam & Jakub Mućk, 2021. "On the Optimal Labor Income Share," International Journal of Central Banking, International Journal of Central Banking, vol. 17(70), pages 1-52, October.
    12. Seth G. Benzell & Erik Brynjolfsson, 2019. "Digital Abundance and Scarce Genius: Implications for Wages, Interest Rates, and Growth," NBER Working Papers 25585, National Bureau of Economic Research, Inc.
    13. Prettner, Klaus & Strulik, Holger, 2020. "Innovation, automation, and inequality: Policy challenges in the race against the machine," Journal of Monetary Economics, Elsevier, vol. 116(C), pages 249-265.
    14. Pengfei Zhang, 2023. "Endogenous capital-augmenting R&D, intersectoral labor reallocation, and the movement of the labor share," Journal of Economics, Springer, vol. 140(1), pages 1-36, September.
    15. Gasteiger, Emanuel & Prettner, Klaus, 2022. "Automation, Stagnation, And The Implications Of A Robot Tax," Macroeconomic Dynamics, Cambridge University Press, vol. 26(1), pages 218-249, January.
    16. Ekaterina Ponomareva & Alexandra Bozhechkova & Alexandr Knobel, 2012. "Factors of Economic Growth," Published Papers 172, Gaidar Institute for Economic Policy, revised 2013.
    17. Prettner, Klaus & Strulik, Holger, 2017. "The lost race against the machine: Automation, education and inequality in an R&D-based growth model," Hohenheim Discussion Papers in Business, Economics and Social Sciences 08-2017, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
    18. Anderton, Robert & Jarvis, Valerie & Labhard, Vincent & Morgan, Julian & Petroulakis, Filippos & Vivian, Lara, 2020. "Virtually everywhere? Digitalisation and the euro area and EU economies," Occasional Paper Series 244, European Central Bank.
    19. von Maydell, Richard, 2024. "Artificial Intelligence and its Effect on Competition and Factor Income Shares," VfS Annual Conference 2023 (Regensburg): Growth and the "sociale Frage" 277654, Verein für Socialpolitik / German Economic Association, revised 2024.
    20. Diego Romero-Ávila, 2013. "Is Physical Investment The Key To China'S Growth Miracle?," Economic Inquiry, Western Economic Association International, vol. 51(4), pages 1948-1971, October.

    More about this item

    Keywords

    production function; R&D equation; technological progress; complementarity; automation; artificial intelligence.;
    All these keywords.

    JEL classification:

    • O30 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - General
    • O40 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - General
    • O41 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - One, Two, and Multisector Growth Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sgh:kaewps:2019042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dariusz Nojszewski (email available below). General contact details of provider: https://edirc.repec.org/data/kawawpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.