[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/ris/fcnwpa/2014_016.html
   My bibliography  Save this paper

Wind Farm Siting Using a Spatial Analytic Hierarchy Process Approach: A Case Study of the Städteregion Aachen

Author

Listed:
  • Höfer, Tim

    (RWTH Aachen University)

  • Sunak, Yasin

    (E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN))

  • Siddique, Hafiz

    (Institute for Power Generation and Storage Systems (PGS))

  • Madlener, Reinhard

    (E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN))

Abstract
Wind energy is one of the most important renewable energy sources in Germany and plays a key role regarding energy and climate policy targets of the German government. However, a further diffusion of wind farms involves strong spatial implications that refer to various adverse effects on landscape (onshore wind), noise level, and wildlife. Negative environmental impacts caused by the sometimes suboptimal siting of wind farms have induced an increasing gap between the social acceptance of this technology on the global and local levels. Particularly on the local level, siting processes of wind farm projects often trigger public protest. The aim of this paper is to improve the siting assessment by providing a holistic multi-criteria decision making approach that incorporates techno-economic, socio-political, and environmental criteria, which are defined in a way that social acceptance-related issues are specifically emphasized. We apply a GIS-based Analytic Hierarchy Process approach, where a group of local experts is asked to pairwise compare the incorporated criteria in order to derive the relative importance of each criterion. The results obtained indicate that 9.4% of the study area is still available for wind energy development, whereas only 1.74% of the region is characterized by high suitability. In particular, the northern part of the region still offers substantial unexploited wind energy potential. A comparison with the location of existing wind farms and a sensitivity analysis validate the reliability and accuracy of the model results.

Suggested Citation

  • Höfer, Tim & Sunak, Yasin & Siddique, Hafiz & Madlener, Reinhard, 2014. "Wind Farm Siting Using a Spatial Analytic Hierarchy Process Approach: A Case Study of the Städteregion Aachen," FCN Working Papers 16/2014, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
  • Handle: RePEc:ris:fcnwpa:2014_016
    as

    Download full text from publisher

    File URL: http://www.fcn.eonerc.rwth-aachen.de/global/show_document.asp?id=aaaaaaaaaalewqp
    File Function: Full text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. James S. Dyer, 1990. "Remarks on the Analytic Hierarchy Process," Management Science, INFORMS, vol. 36(3), pages 249-258, March.
    2. Sultana, Arifa & Kumar, Amit, 2012. "Optimal siting and size of bioenergy facilities using geographic information system," Applied Energy, Elsevier, vol. 94(C), pages 192-201.
    3. Saaty, Thomas L., 2003. "Decision-making with the AHP: Why is the principal eigenvector necessary," European Journal of Operational Research, Elsevier, vol. 145(1), pages 85-91, February.
    4. Janke, Jason R., 2010. "Multicriteria GIS modeling of wind and solar farms in Colorado," Renewable Energy, Elsevier, vol. 35(10), pages 2228-2234.
    5. van der Horst, Dan, 2007. "NIMBY or not? Exploring the relevance of location and the politics of voiced opinions in renewable energy siting controversies," Energy Policy, Elsevier, vol. 35(5), pages 2705-2714, May.
    6. Dominic Gastes & Wolfgang Gaul, 2012. "The Consistency Adjustment Problem of AHP Pairwise Comparison Matrices," Springer Books, in: Adamantios Diamantopoulos & Wolfgang Fritz & Lutz Hildebrandt (ed.), Quantitative Marketing and Marketing Management, edition 127, chapter 2, pages 51-62, Springer.
    7. Ernest H. Forman & Saul I. Gass, 2001. "The Analytic Hierarchy Process---An Exposition," Operations Research, INFORMS, vol. 49(4), pages 469-486, August.
    8. Latinopoulos, D. & Kechagia, K., 2015. "A GIS-based multi-criteria evaluation for wind farm site selection. A regional scale application in Greece," Renewable Energy, Elsevier, vol. 78(C), pages 550-560.
    9. Ramírez-Rosado, Ignacio J. & García-Garrido, Eduardo & Fernández-Jiménez, L. Alfredo & Zorzano-Santamaría, Pedro J. & Monteiro, Cláudio & Miranda, Vladimiro, 2008. "Promotion of new wind farms based on a decision support system," Renewable Energy, Elsevier, vol. 33(4), pages 558-566.
    10. Krohn, Søren & Damborg, Steffen, 1999. "On public attitudes towards wind power," Renewable Energy, Elsevier, vol. 16(1), pages 954-960.
    11. Patrick T. Harker & Luis G. Vargas, 1990. "Reply to "Remarks on the Analytic Hierarchy Process" by J. S. Dyer," Management Science, INFORMS, vol. 36(3), pages 269-273, March.
    12. Rodman, Laura C. & Meentemeyer, Ross K., 2006. "A geographic analysis of wind turbine placement in Northern California," Energy Policy, Elsevier, vol. 34(15), pages 2137-2149, October.
    13. Sunak, Yasin & Madlener, Reinhard, 2012. "The Impact of Wind Farms on Property Values: A Geographically Weighted Hedonic Pricing Model," FCN Working Papers 3/2012, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised Mar 2013.
    14. Sunak, Yasin & Madlener, Reinhard, 2014. "Local Impacts of Wind Farms on Property Values: A Spatial Difference-in-Differences Analysis," FCN Working Papers 1/2014, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised Oct 2014.
    15. Forman, Ernest & Peniwati, Kirti, 1998. "Aggregating individual judgments and priorities with the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 108(1), pages 165-169, July.
    16. Baban, Serwan M.J & Parry, Tim, 2001. "Developing and applying a GIS-assisted approach to locating wind farms in the UK," Renewable Energy, Elsevier, vol. 24(1), pages 59-71.
    17. van Haaren, Rob & Fthenakis, Vasilis, 2011. "GIS-based wind farm site selection using spatial multi-criteria analysis (SMCA): Evaluating the case for New York State," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3332-3340, September.
    18. Aydin, Nazli Yonca & Kentel, Elcin & Duzgun, Sebnem, 2010. "GIS-based environmental assessment of wind energy systems for spatial planning: A case study from Western Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 364-373, January.
    19. Franco, Camilo & Bojesen, Mikkel & Hougaard, Jens Leth & Nielsen, Kurt, 2015. "A fuzzy approach to a multiple criteria and Geographical Information System for decision support on suitable locations for biogas plants," Applied Energy, Elsevier, vol. 140(C), pages 304-315.
    20. George C. Ledec & Kennan W. Rapp & Roberto G. Aiello, 2011. "Greening the Wind : Environmental and Social Considerations for Wind Power Development," World Bank Publications - Books, The World Bank Group, number 2388.
    21. Sánchez-Lozano, J.M. & García-Cascales, M.S. & Lamata, M.T., 2014. "Identification and selection of potential sites for onshore wind farms development in Region of Murcia, Spain," Energy, Elsevier, vol. 73(C), pages 311-324.
    22. Höhn, J. & Lehtonen, E. & Rasi, S. & Rintala, J., 2014. "A Geographical Information System (GIS) based methodology for determination of potential biomasses and sites for biogas plants in southern Finland," Applied Energy, Elsevier, vol. 113(C), pages 1-10.
    23. James S. Dyer, 1990. "A Clarification of "Remarks on the Analytic Hierarchy Process"," Management Science, INFORMS, vol. 36(3), pages 274-275, March.
    24. Thomas L. Saaty, 1990. "An Exposition of the AHP in Reply to the Paper "Remarks on the Analytic Hierarchy Process"," Management Science, INFORMS, vol. 36(3), pages 259-268, March.
    25. Maria Garbuzova-Schlifter & Reinhard Madlener, 2017. "Risk Analysis of Energy Performance Contracting Projects in Russia: An Analytic Hierarchy Process Approach," Operations Research Proceedings, in: Karl Franz Dörner & Ivana Ljubic & Georg Pflug & Gernot Tragler (ed.), Operations Research Proceedings 2015, pages 683-690, Springer.
    26. Kann, Shayle, 2009. "Overcoming barriers to wind project finance in Australia," Energy Policy, Elsevier, vol. 37(8), pages 3139-3148, August.
    27. Omitaomu, Olufemi A. & Blevins, Brandon R. & Jochem, Warren C. & Mays, Gary T. & Belles, Randy & Hadley, Stanton W. & Harrison, Thomas J. & Bhaduri, Budhendra L. & Neish, Bradley S. & Rose, Amy N., 2012. "Adapting a GIS-based multicriteria decision analysis approach for evaluating new power generating sites," Applied Energy, Elsevier, vol. 96(C), pages 292-301.
    28. Zanakis, Stelios H. & Solomon, Anthony & Wishart, Nicole & Dublish, Sandipa, 1998. "Multi-attribute decision making: A simulation comparison of select methods," European Journal of Operational Research, Elsevier, vol. 107(3), pages 507-529, June.
    29. Schallenberg-Rodríguez, Julieta & Notario-del Pino, Jesús, 2014. "Evaluation of on-shore wind techno-economical potential in regions and islands," Applied Energy, Elsevier, vol. 124(C), pages 117-129.
    30. Wolsink, Maarten, 2007. "Planning of renewables schemes: Deliberative and fair decision-making on landscape issues instead of reproachful accusations of non-cooperation," Energy Policy, Elsevier, vol. 35(5), pages 2692-2704, May.
    31. Pohekar, S. D. & Ramachandran, M., 2004. "Application of multi-criteria decision making to sustainable energy planning--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(4), pages 365-381, August.
    32. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    33. Gorsevski, Pece V. & Cathcart, Steven C. & Mirzaei, Golrokh & Jamali, Mohsin M. & Ye, Xinyue & Gomezdelcampo, Enrique, 2013. "A group-based spatial decision support system for wind farm site selection in Northwest Ohio," Energy Policy, Elsevier, vol. 55(C), pages 374-385.
    34. Ramanathan, R. & Ganesh, L. S., 1994. "Group preference aggregation methods employed in AHP: An evaluation and an intrinsic process for deriving members' weightages," European Journal of Operational Research, Elsevier, vol. 79(2), pages 249-265, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baseer, M.A. & Rehman, S. & Meyer, J.P. & Alam, Md. Mahbub, 2017. "GIS-based site suitability analysis for wind farm development in Saudi Arabia," Energy, Elsevier, vol. 141(C), pages 1166-1176.
    2. David Severin Ryberg & Martin Robinius & Detlef Stolten, 2018. "Evaluating Land Eligibility Constraints of Renewable Energy Sources in Europe," Energies, MDPI, vol. 11(5), pages 1-19, May.
    3. Jangid, Jayant & Bera, Apurba Kumar & Joseph, Manoj & Singh, Vishal & Singh, T.P. & Pradhan, B.K. & Das, Sandipan, 2016. "Potential zones identification for harvesting wind energy resources in desert region of India – A multi criteria evaluation approach using remote sensing and GIS," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1-10.
    4. Asadi, Meysam & Pourhossein, Kazem, 2021. "Wind farm site selection considering turbulence intensity," Energy, Elsevier, vol. 236(C).
    5. Shao, Meng & Han, Zhixin & Sun, Jinwei & Xiao, Chengsi & Zhang, Shulei & Zhao, Yuanxu, 2020. "A review of multi-criteria decision making applications for renewable energy site selection," Renewable Energy, Elsevier, vol. 157(C), pages 377-403.
    6. Sofia Spyridonidou & Dimitra G. Vagiona, 2020. "Systematic Review of Site-Selection Processes in Onshore and Offshore Wind Energy Research," Energies, MDPI, vol. 13(22), pages 1-26, November.
    7. Sofia Spyridonidou & Georgia Sismani & Eva Loukogeorgaki & Dimitra G. Vagiona & Hagit Ulanovsky & Daniel Madar, 2021. "Sustainable Spatial Energy Planning of Large-Scale Wind and PV Farms in Israel: A Collaborative and Participatory Planning Approach," Energies, MDPI, vol. 14(3), pages 1-23, January.
    8. Frank Hanssen & Roel May & Jiska van Dijk & Jan Ketil Rød, 2018. "Spatial Multi-Criteria Decision Analysis Tool Suite for Consensus-Based Siting of Renewable Energy Structures," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 20(03), pages 1-28, September.
    9. Rogna, Marco, 2020. "A first-phase screening method for site selection of large-scale solar plants with an application to Italy," Land Use Policy, Elsevier, vol. 99(C).
    10. Pilar Díaz-Cuevas, 2018. "GIS-Based Methodology for Evaluating the Wind-Energy Potential of Territories: A Case Study from Andalusia (Spain)," Energies, MDPI, vol. 11(10), pages 1-16, October.
    11. Gigović, Ljubomir & Pamučar, Dragan & Božanić, Darko & Ljubojević, Srđan, 2017. "Application of the GIS-DANP-MABAC multi-criteria model for selecting the location of wind farms: A case study of Vojvodina, Serbia," Renewable Energy, Elsevier, vol. 103(C), pages 501-521.
    12. Lehmann, Paul & Ammermann, Kathrin & Gawel, Erik & Geiger, Charlotte & Hauck, Jennifer & Heilmann, Jörg & Meier, Jan-Niklas & Ponitka, Jens & Schicketanz, Sven & Stemmer, Boris & Tafarte, Philip & Thr, 2021. "Managing spatial sustainability trade-offs: The case of wind power," Ecological Economics, Elsevier, vol. 185(C).
    13. Lehmann, Paul & Ammermann, Kathrin & Gawel, Erik & Geiger, Charlotte & Hauck, Jennifer & Heilmann, Jörg & Meier, Jan-Niklas & Ponitka, Jens & Schicketanz, Sven & Stemmer, Boris & Tafarte, Philip & Thr, 2020. "Managing spatial sustainability trade-offs: The case of wind power," UFZ Discussion Papers 4/2020, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    14. Dragan Pamučar & Ljubomir Gigović & Zoran Bajić & Miljojko Janošević, 2017. "Location Selection for Wind Farms Using GIS Multi-Criteria Hybrid Model: An Approach Based on Fuzzy and Rough Numbers," Sustainability, MDPI, vol. 9(8), pages 1-23, July.
    15. Ali, Shahid & Taweekun, Juntakan & Techato, Kuaanan & Waewsak, Jompob & Gyawali, Saroj, 2019. "GIS based site suitability assessment for wind and solar farms in Songkhla, Thailand," Renewable Energy, Elsevier, vol. 132(C), pages 1360-1372.
    16. Yasir Ahmed Solangi & Qingmei Tan & Muhammad Waris Ali Khan & Nayyar Hussain Mirjat & Ifzal Ahmed, 2018. "The Selection of Wind Power Project Location in the Southeastern Corridor of Pakistan: A Factor Analysis, AHP, and Fuzzy-TOPSIS Application," Energies, MDPI, vol. 11(8), pages 1-26, July.
    17. Hasan Eroğlu, 2021. "Multi-criteria decision analysis for wind power plant location selection based on fuzzy AHP and geographic information systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18278-18310, December.
    18. Michele Bernasconi & Christine Choirat & Raffaello Seri, 2010. "The Analytic Hierarchy Process and the Theory of Measurement," Management Science, INFORMS, vol. 56(4), pages 699-711, April.
    19. Yildiz, S.S., 2024. "Spatial multi-criteria decision making approach for wind farm site selection: A case study in Balıkesir, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    20. Sotiropoulou, Kalliopi F. & Vavatsikos, Athanasios P., 2021. "Onshore wind farms GIS-Assisted suitability analysis using PROMETHEE II," Energy Policy, Elsevier, vol. 158(C).

    More about this item

    Keywords

    Wind farm siting; Multi-criteria decision making; Analytic hierarchy process; GIS;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • R10 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:fcnwpa:2014_016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Hendrik Schmitz (email available below). General contact details of provider: https://edirc.repec.org/data/fceonde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.