[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/rep/wpaper/2009-04.html
   My bibliography  Save this paper

Wind Power: The Economic Impact of Intermittency

Author

Listed:
  • G. Cornelis van Kooten
Abstract
Wind is the fastest growing renewable energy source for generating electricity, but economic research lags behind. In this study, therefore, we examine the economics of integrating large-scale wind energy into an existing electrical grid. Using a simple grid management model to investigate the impact of various levels of wind penetration on grid management costs, we show that costs of reducing CO2 emissions by relying more on wind power depend on the generation mix of the existing electricity grid and the degree of wind penetration, with costs ranging from $21 to well over $1000 per tonne of CO2 reduced. Costs are lowest if wind displaces large amounts of fossil fuel production and there is some hydroelectric power to act as a buffer. Hydro capacity has the ability to store wind generated power for use at more opportune times. If wind does nothing more than replace hydro or nuclear power then the environmental benefits (reduced CO2 emissions) of investing in wind power are small.

Suggested Citation

  • G. Cornelis van Kooten, 2009. "Wind Power: The Economic Impact of Intermittency," Working Papers 2009-04, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
  • Handle: RePEc:rep:wpaper:2009-04
    as

    Download full text from publisher

    File URL: https://web.uvic.ca/~repa/publications/REPA%20working%20papers/WorkingPaper2009-04.pdf
    File Function: Final version, 2009
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. van Kooten, G. Cornelis & Timilsina, Govinda R., 2009. "Wind power development : economics and policies," Policy Research Working Paper Series 4868, The World Bank.
    2. Gagnon, Luc & Belanger, Camille & Uchiyama, Yohji, 2002. "Life-cycle assessment of electricity generation options: The status of research in year 2001," Energy Policy, Elsevier, vol. 30(14), pages 1267-1278, November.
    3. Lund, Henrik, 2005. "Large-scale integration of wind power into different energy systems," Energy, Elsevier, vol. 30(13), pages 2402-2412.
    4. Oswald, James & Raine, Mike & Ashraf-Ball, Hezlin, 2008. "Will British weather provide reliable electricity?," Energy Policy, Elsevier, vol. 36(8), pages 3202-3215, August.
    5. Maddaloni, Jesse D. & Rowe, Andrew M. & van Kooten, G. Cornelis, 2008. "Network constrained wind integration on Vancouver Island," Energy Policy, Elsevier, vol. 36(2), pages 591-602, February.
    6. Lawrence Pitt & G. Cornelis van Kooten & Murray Love & Ned Djilali, 2005. "Utility-scale Wind Power: Impacts of Increased Penetration," Working Papers 2005-01, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    7. DeCarolis, Joseph F. & Keith, David W., 2006. "The economics of large-scale wind power in a carbon constrained world," Energy Policy, Elsevier, vol. 34(4), pages 395-410, March.
    8. Kennedy, Scott, 2005. "Wind power planning: assessing long-term costs and benefits," Energy Policy, Elsevier, vol. 33(13), pages 1661-1675, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Timilsina, Govinda R. & Cornelis van Kooten, G. & Narbel, Patrick A., 2013. "Global wind power development: Economics and policies," Energy Policy, Elsevier, vol. 61(C), pages 642-652.
    2. Scorah, Hugh & Sopinka, Amy & van Kooten, G. Cornelis, 2012. "The economics of storage, transmission and drought: integrating variable wind power into spatially separated electricity grids," Energy Economics, Elsevier, vol. 34(2), pages 536-541.
    3. Kern, Jordan D. & Patino-Echeverri, Dalia & Characklis, Gregory W., 2014. "An integrated reservoir-power system model for evaluating the impacts of wind integration on hydropower resources," Renewable Energy, Elsevier, vol. 71(C), pages 553-562.
    4. Scorah, Hugh & Sopinka, Amy & van Kooten, G. Cornelis, 2010. "Managing Water Shortages in the Western Electricity Grids," Working Papers 59701, University of Victoria, Resource Economics and Policy.
    5. G. Cornelis van Kooten, 2013. "Economic analysis of feed-in tariffs for generating electricity from renewable energy sources," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 9, pages 224-253, Edward Elgar Publishing.
    6. Winzer, Christian, 2012. "Conceptualizing energy security," Energy Policy, Elsevier, vol. 46(C), pages 36-48.
    7. T. Heikkinen, 2014. "A Hotelling model of spatial competition with local production," Letters in Spatial and Resource Sciences, Springer, vol. 7(2), pages 103-120, July.
    8. Narbel, Patrick A., 2014. "Rethinking how to support intermittent renewables," Discussion Papers 2014/17, Norwegian School of Economics, Department of Business and Management Science.
    9. Richard J. Vyn & Ryan M. McCullough, 2014. "The Effects of Wind Turbines on Property Values in Ontario: Does Public Perception Match Empirical Evidence?," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 62(3), pages 365-392, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van Kooten, G. Cornelis & Wong, Linda, 2010. "Economics of wind power when national grids are unreliable," Energy Policy, Elsevier, vol. 38(4), pages 1991-1998, April.
    2. van Kooten, G. Cornelis, 2015. "All you want to know about the Economics of Wind Power," Working Papers 241693, University of Victoria, Resource Economics and Policy.
    3. van Kooten, G. Cornelis & Timilsina, Govinda R., 2009. "Wind power development : economics and policies," Policy Research Working Paper Series 4868, The World Bank.
    4. Scorah, Hugh & Sopinka, Amy & van Kooten, G. Cornelis, 2012. "The economics of storage, transmission and drought: integrating variable wind power into spatially separated electricity grids," Energy Economics, Elsevier, vol. 34(2), pages 536-541.
    5. Boccard, Nicolas, 2010. "Economic properties of wind power: A European assessment," Energy Policy, Elsevier, vol. 38(7), pages 3232-3244, July.
    6. Benitez, Liliana E. & Benitez, Pablo C. & van Kooten, G. Cornelis, 2008. "The economics of wind power with energy storage," Energy Economics, Elsevier, vol. 30(4), pages 1973-1989, July.
    7. Schenk, Niels J. & Moll, Henri C. & Potting, José & Benders, René M.J., 2007. "Wind energy, electricity, and hydrogen in the Netherlands," Energy, Elsevier, vol. 32(10), pages 1960-1971.
    8. Ludig, Sylvie & Haller, Markus & Schmid, Eva & Bauer, Nico, 2011. "Fluctuating renewables in a long-term climate change mitigation strategy," Energy, Elsevier, vol. 36(11), pages 6674-6685.
    9. Mason, I.G. & Page, S.C. & Williamson, A.G., 2010. "A 100% renewable electricity generation system for New Zealand utilising hydro, wind, geothermal and biomass resources," Energy Policy, Elsevier, vol. 38(8), pages 3973-3984, August.
    10. Enevoldsen, Peter & Sovacool, Benjamin K., 2016. "Integrating power systems for remote island energy supply: Lessons from Mykines, Faroe Islands," Renewable Energy, Elsevier, vol. 85(C), pages 642-648.
    11. Ryan Prescott & G. Cornelis van Kooten & Hui Zhu, 2007. "The Potential for Wind Energy Meeting Electricity Needs on Vancouver Island," Energy & Environment, , vol. 18(6), pages 723-746, November.
    12. Lenzen, Manfred & McBain, Bonnie & Trainer, Ted & Jütte, Silke & Rey-Lescure, Olivier & Huang, Jing, 2016. "Simulating low-carbon electricity supply for Australia," Applied Energy, Elsevier, vol. 179(C), pages 553-564.
    13. Zafirakis, D. & Chalvatzis, K. & Kaldellis, J.K., 2013. "“Socially just” support mechanisms for the promotion of renewable energy sources in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 478-493.
    14. Santos-Alamillos, F.J. & Pozo-Vázquez, D. & Ruiz-Arias, J.A. & Lara-Fanego, V. & Tovar-Pescador, J., 2014. "A methodology for evaluating the spatial variability of wind energy resources: Application to assess the potential contribution of wind energy to baseload power," Renewable Energy, Elsevier, vol. 69(C), pages 147-156.
    15. Narbel, Patrick A., 2014. "Rethinking how to support intermittent renewables," Discussion Papers 2014/17, Norwegian School of Economics, Department of Business and Management Science.
    16. Jesse Maddaloni & Andrew Rowe & G. Cornelis van Kooten, 2006. "Network Constrained Wind Integration: An Optimal Cost Approach," Working Papers 2006-05, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    17. Salci, Sener & Jenkins, Glenn, 2016. "An Economic and Stakeholder Analysis for the Design of IPP Contracts for Wind Farms," MPRA Paper 70578, University Library of Munich, Germany.
    18. McPherson, Madeleine & Karney, Bryan, 2017. "A scenario based approach to designing electricity grids with high variable renewable energy penetrations in Ontario, Canada: Development and application of the SILVER model," Energy, Elsevier, vol. 138(C), pages 185-196.
    19. Fan, Xiao-chao & Wang, Wei-qing & Shi, Rui-jing & Li, Feng-ting, 2015. "Review of developments and insights into an index system of wind power utilization level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 463-471.
    20. van Kooten, G. Cornelis & Timilsina, Govinda R., 2008. "Wind Power Development: Opportunities and Challenges," Working Papers 45665, University of Victoria, Resource Economics and Policy.

    More about this item

    Keywords

    Wind power; carbon costs; electricity grids; mathematical programming;
    All these keywords.

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rep:wpaper:2009-04. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: G.C. van Kooten (email available below). General contact details of provider: https://edirc.repec.org/data/devicca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.