[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/rdg/icmadp/icma-dp2001-10.html
   My bibliography  Save this paper

Option Pricing with Normal Mixture Returns: Modelling Excess Kurtosis and Uncertanity in Volatility

Author

Listed:
  • Carol Alexander

    (ICMA Centre, University of Reading)

  • Sujit Narayanan

    (ICMA Centre, University of Reading)

Abstract
his paper addresses the problem of uncertainty in volatility, and how this affects option prices. The volatility uncertainty adjustment to Black-Scholes option prices is quantified in this paper using a normal mixture model for the distribution of underlying returns, or equivalently, assuming a mixture of lognormal densities for the density of the asset price. The use of a lognormal mixture price process for pricing options is not new (Ritchey, 1990) but the local volatility that should be used in the lognormal mixture price process has only recently been established (Brigo and Mercurio, 2000a, 2001).Â

Suggested Citation

  • Carol Alexander & Sujit Narayanan, 2001. "Option Pricing with Normal Mixture Returns: Modelling Excess Kurtosis and Uncertanity in Volatility," ICMA Centre Discussion Papers in Finance icma-dp2001-10, Henley Business School, University of Reading, revised Dec 2001.
  • Handle: RePEc:rdg:icmadp:icma-dp2001-10
    as

    Download full text from publisher

    File URL: http://www.icmacentre.ac.uk/pdf/discussion/DP2001-10.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    2. Goodhart, Charles A. E. & O'Hara, Maureen, 1997. "High frequency data in financial markets: Issues and applications," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 73-114, June.
    3. Paul Embrechts & Sidney Resnick & Gennady Samorodnitsky, 1999. "Extreme Value Theory as a Risk Management Tool," North American Actuarial Journal, Taylor & Francis Journals, vol. 3(2), pages 30-41.
    4. Ritchey, Robert J, 1990. "Call Option Valuation for Discrete Normal Mixtures," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 13(4), pages 285-296, Winter.
    5. Hsieh, David A., 1988. "The statistical properties of daily foreign exchange rates: 1974-1983," Journal of International Economics, Elsevier, vol. 24(1-2), pages 129-145, February.
    6. Melick, William R. & Thomas, Charles P., 1997. "Recovering an Asset's Implied PDF from Option Prices: An Application to Crude Oil during the Gulf Crisis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 32(1), pages 91-115, March.
    7. Muller, Ulrich A. & Dacorogna, Michel M. & Olsen, Richard B. & Pictet, Olivier V. & Schwarz, Matthias & Morgenegg, Claude, 1990. "Statistical study of foreign exchange rates, empirical evidence of a price change scaling law, and intraday analysis," Journal of Banking & Finance, Elsevier, vol. 14(6), pages 1189-1208, December.
    8. Baillie, Richard T & Bollerslev, Tim, 2002. "The Message in Daily Exchange Rates: A Conditional-Variance Tale," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 60-68, January.
    9. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    10. Kien Tran, 1998. "Estimating mixtures of normal distributions via empirical characteristic function," Econometric Reviews, Taylor & Francis Journals, vol. 17(2), pages 167-183.
    11. McNeil, Alexander J., 1997. "Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory," ASTIN Bulletin, Cambridge University Press, vol. 27(1), pages 117-137, May.
    12. Robert J. Ritchey, 1990. "Call Option Valuation For Discrete Normal Mixtures," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 13(4), pages 285-296, December.
    13. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kole, H.J.W.G. & Koedijk, C.G. & Verbeek, M.J.C.M., 2004. "The effects of systemic crises when investors can be crisis ignorant," ERIM Report Series Research in Management ERS-2004-027-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    2. En-Der Su & Feng-Jeng Lin, 2012. "Two-State Volatility Transition Pricing and Hedging of TXO Options," Computational Economics, Springer;Society for Computational Economics, vol. 39(3), pages 259-287, March.
    3. Halperin, Igor, 2022. "Non-equilibrium skewness, market crises, and option pricing: Non-linear Langevin model of markets with supersymmetry," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    4. Damiano Brigo, 2008. "The general mixture-diffusion SDE and its relationship with an uncertain-volatility option model with volatility-asset decorrelation," Papers 0812.4052, arXiv.org.
    5. Fleming, Jeff & Paye, Bradley S., 2011. "High-frequency returns, jumps and the mixture of normals hypothesis," Journal of Econometrics, Elsevier, vol. 160(1), pages 119-128, January.
    6. Igor Halperin, 2020. "Non-Equilibrium Skewness, Market Crises, and Option Pricing: Non-Linear Langevin Model of Markets with Supersymmetry," Papers 2011.01417, arXiv.org, revised Dec 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mondher Bellalah & Marc Lavielle, 2002. "A Decomposition of Empirical Distributions with Applications to the Valuation of Derivative Assets," Multinational Finance Journal, Multinational Finance Journal, vol. 6(2), pages 99-130, June.
    2. Alexander, Carol, 2004. "Normal mixture diffusion with uncertain volatility: Modelling short- and long-term smile effects," Journal of Banking & Finance, Elsevier, vol. 28(12), pages 2957-2980, December.
    3. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    4. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    5. Emmanuel Afuecheta & Idika E. Okorie & Saralees Nadarajah & Geraldine E. Nzeribe, 2024. "Forecasting Value at Risk and Expected Shortfall of Foreign Exchange Rate Volatility of Major African Currencies via GARCH and Dynamic Conditional Correlation Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 63(1), pages 271-304, January.
    6. Pan, Ming-Shiun & Chan, Kam C. & Fok, Chi-Wing, 1995. "The distribution of currency futures price changes: A two-piece mixture of normals approach," International Review of Economics & Finance, Elsevier, vol. 4(1), pages 69-78.
    7. Tim Bollerslev & Ray Y. Chou & Narayanan Jayaraman & Kenneth F. Kroner - L, 1991. "es modéles ARCH en finance : un point sur la théorie et les résultats empiriques," Annals of Economics and Statistics, GENES, issue 24, pages 1-59.
    8. Evžen Kočenda, 1996. "Volatility of a Seemingly Fixed Exchange Rate," Eastern European Economics, Taylor & Francis Journals, vol. 34(6), pages 37-67, December.
    9. Torben G. Andersen & Tim Bollerslev, 1997. "Answering the Critics: Yes, ARCH Models Do Provide Good Volatility Forecasts," NBER Working Papers 6023, National Bureau of Economic Research, Inc.
    10. Dinghai Xu, 2009. "The Applications of Mixtures of Normal Distributions in Empirical Finance: A Selected Survey," Working Papers 0904, University of Waterloo, Department of Economics, revised Sep 2009.
    11. Emese Lazar & Carol Alexander, 2006. "Normal mixture GARCH(1,1): applications to exchange rate modelling," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 307-336.
    12. Maria Kyriacou & Jose Olmo & Marius Strittmatter, 2021. "Optimal portfolio allocation using option‐implied information," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(2), pages 266-285, February.
    13. Eleni Constantinou & Robert Georgiades & Avo Kazandjian & George Kouretas, 2005. "Mean and variance causality between the Cyprus Stock Exchange and major equity markets," Working Papers 0501, University of Crete, Department of Economics.
    14. Bauer, Rob M M J & Nieuwland, Frederick G M C & Verschoor, Willem F C, 1994. "German Stock Market Dynamics," Empirical Economics, Springer, vol. 19(3), pages 397-418.
    15. Joseph P. Byrne & E. Philip Davis, 2005. "Investment and Uncertainty in the G7," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 141(1), pages 1-32, April.
    16. Ibrahim Chowdhury & Lucio Sarno, 2004. "Time‐Varying Volatility in the Foreign Exchange Market: New Evidence on its Persistence and on Currency Spillovers," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 31(5‐6), pages 759-793, June.
    17. Gencay, Ramazan & Selcuk, Faruk & Ulugulyagci, Abdurrahman, 2003. "High volatility, thick tails and extreme value theory in value-at-risk estimation," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 337-356, October.
    18. Dominguez, Kathryn M., 1998. "Central bank intervention and exchange rate volatility1," Journal of International Money and Finance, Elsevier, vol. 17(1), pages 161-190, February.
    19. de Vries, Casper G., 1991. "On the relation between GARCH and stable processes," Journal of Econometrics, Elsevier, vol. 48(3), pages 313-324, June.
    20. Sung Ik Kim, 2022. "ARMA–GARCH model with fractional generalized hyperbolic innovations," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-25, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rdg:icmadp:icma-dp2001-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marie Pearson (email available below). General contact details of provider: https://edirc.repec.org/data/bsrdguk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.