[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/qed/wpaper/1278.html
   My bibliography  Save this paper

Bootstrap Confidence Sets With Weak Instruments

Author

Listed:
  • James G. MacKinnon

    (Queen's University)

  • Russell Davidson

    (McGill University)

Abstract
We study several methods of constructing confidence sets for the coefficient of the single right-hand-side endogenous variable in alinear equation with weak instruments. Two of these are based on conditional likelihood ratio (CLR) tests, and the others are based on inverting t statistics or the bootstrap P values associated with them. We propose a new method for constructing bootstrap confidence sets based on t statistics. In large samples, the procedures thatgenerally work best are CLR confidence sets using asymptotic critical values and bootstrap confidence sets based on LIML estimates.

Suggested Citation

  • James G. MacKinnon & Russell Davidson, 2012. "Bootstrap Confidence Sets With Weak Instruments," Working Paper 1278, Economics Department, Queen's University.
  • Handle: RePEc:qed:wpaper:1278
    as

    Download full text from publisher

    File URL: https://www.econ.queensu.ca/sites/econ.queensu.ca/files/qed_wp_1278.pdf
    File Function: First version 2012
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Marcelo J. Moreira & Jack R. Porter & Gustavo A. Suarez, 2004. "Bootstrap and Higher-Order Expansion Validity When Instruments May Be Weak," Harvard Institute of Economic Research Working Papers 2048, Harvard - Institute of Economic Research.
    2. Russell Davidson & James G. MacKinnon, 2014. "Confidence sets based on inverting Anderson–Rubin tests," Econometrics Journal, Royal Economic Society, vol. 17(2), pages 39-58, June.
    3. Davidson, Russell & Flachaire, Emmanuel, 2008. "The wild bootstrap, tamed at last," Journal of Econometrics, Elsevier, vol. 146(1), pages 162-169, September.
    4. Russell Davidson & James G. MacKinnon, 2008. "Bootstrap inference in a linear equation estimated by instrumental variables," Econometrics Journal, Royal Economic Society, vol. 11(3), pages 443-477, November.
    5. Moreira, Marcelo J., 2009. "Tests with correct size when instruments can be arbitrarily weak," Journal of Econometrics, Elsevier, vol. 152(2), pages 131-140, October.
    6. Zivot, Eric & Startz, Richard & Nelson, Charles R, 1998. "Valid Confidence Intervals and Inference in the Presence of Weak Instruments," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 1119-1146, November.
    7. Jean-Marie Dufour, 1997. "Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models," Econometrica, Econometric Society, vol. 65(6), pages 1365-1388, November.
    8. Andrews, Donald W.K. & Moreira, Marcelo J. & Stock, James H., 2007. "Performance of conditional Wald tests in IV regression with weak instruments," Journal of Econometrics, Elsevier, vol. 139(1), pages 116-132, July.
    9. Davidson, Russell & MacKinnon, James G., 2010. "Wild Bootstrap Tests for IV Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 128-144.
    10. Marcelo J. Moreira, 2003. "A Conditional Likelihood Ratio Test for Structural Models," Econometrica, Econometric Society, vol. 71(4), pages 1027-1048, July.
    11. Moreira, Marcelo J. & Porter, Jack R. & Suarez, Gustavo A., 2009. "Bootstrap validity for the score test when instruments may be weak," Journal of Econometrics, Elsevier, vol. 149(1), pages 52-64, April.
    12. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    13. Frank Kleibergen, 2002. "Pivotal Statistics for Testing Structural Parameters in Instrumental Variables Regression," Econometrica, Econometric Society, vol. 70(5), pages 1781-1803, September.
    14. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-529, October.
    15. Phillips, P.C.B., 1983. "Exact small sample theory in the simultaneous equations model," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 1, chapter 8, pages 449-516, Elsevier.
    16. Mikusheva, Anna, 2010. "Robust confidence sets in the presence of weak instruments," Journal of Econometrics, Elsevier, vol. 157(2), pages 236-247, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Blog mentions

    As found by EconAcademics.org, the blog aggregator for Economics research:
    1. My "Must Read" List
      by Dave Giles in Econometrics Beat: Dave Giles' Blog on 2012-09-27 06:33:00

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Itay Saporta-Eksten & Ity Shurtz & Sarit Weisburd, 2021. "Social Security, Labor Supply, and Health of Older Workers: Quasi-Experimental Evidence from a Large Reform [Identification and Estimation of Local Average Treatment Effects]," Journal of the European Economic Association, European Economic Association, vol. 19(4), pages 2168-2208.
    2. Doko Tchatoka, Firmin & Wang, Wenjie, 2021. "Uniform Inference after Pretesting for Exogeneity with Heteroskedastic Data," MPRA Paper 106408, University Library of Munich, Germany.
    3. Wang, Wenjie, 2021. "Wild Bootstrap for Instrumental Variables Regression with Weak Instruments and Few Clusters," MPRA Paper 106227, University Library of Munich, Germany.
    4. MacKinnon, James G., 2020. "Wild cluster bootstrap confidence intervals," L'Actualité Economique, Société Canadienne de Science Economique, vol. 96(4), pages 721-743, Décembre.
    5. Wenjie Wang & Qingfeng Liu, 2015. "Bootstrap-based Selection for Instrumental Variables Model," Economics Bulletin, AccessEcon, vol. 35(3), pages 1886-1896.
    6. Wang, Wenjie & Kaffo, Maximilien, 2016. "Bootstrap inference for instrumental variable models with many weak instruments," Journal of Econometrics, Elsevier, vol. 192(1), pages 231-268.
    7. Wang, Wenjie, 2020. "On Bootstrap Validity for the Test of Overidentifying Restrictions with Many Instruments and Heteroskedasticity," MPRA Paper 104858, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Russell Davidson & James G. MacKinnon, 2015. "Bootstrap Tests for Overidentification in Linear Regression Models," Econometrics, MDPI, vol. 3(4), pages 1-39, December.
    2. Russell Davidson & James G. MacKinnon, 2008. "Bootstrap inference in a linear equation estimated by instrumental variables," Econometrics Journal, Royal Economic Society, vol. 11(3), pages 443-477, November.
    3. Donald W.K. Andrews & James H. Stock, 2005. "Inference with Weak Instruments," NBER Technical Working Papers 0313, National Bureau of Economic Research, Inc.
    4. Russell Davidson & James G. MacKinnon, 2014. "Confidence sets based on inverting Anderson–Rubin tests," Econometrics Journal, Royal Economic Society, vol. 17(2), pages 39-58, June.
    5. Michael Keane & Timothy Neal, 2021. "A Practical Guide to Weak Instruments," Discussion Papers 2021-05b, School of Economics, The University of New South Wales.
    6. Russell Davidson & Victoria Zinde‐Walsh, 2017. "Advances in specification testing," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 50(5), pages 1595-1631, December.
    7. Bekker, Paul A. & Lawford, Steve, 2008. "Symmetry-based inference in an instrumental variable setting," Journal of Econometrics, Elsevier, vol. 142(1), pages 28-49, January.
    8. Jean-Marie Dufour, 2003. "Identification, weak instruments, and statistical inference in econometrics," Canadian Journal of Economics, Canadian Economics Association, vol. 36(4), pages 767-808, November.
    9. Keane, Michael & Neal, Timothy, 2023. "Instrument strength in IV estimation and inference: A guide to theory and practice," Journal of Econometrics, Elsevier, vol. 235(2), pages 1625-1653.
    10. Andrews, Donald W.K. & Guggenberger, Patrik, 2010. "Applications of subsampling, hybrid, and size-correction methods," Journal of Econometrics, Elsevier, vol. 158(2), pages 285-305, October.
    11. Murray Michael P., 2017. "Linear Model IV Estimation When Instruments Are Many or Weak," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
    12. Wang, Wenjie & Kaffo, Maximilien, 2016. "Bootstrap inference for instrumental variable models with many weak instruments," Journal of Econometrics, Elsevier, vol. 192(1), pages 231-268.
    13. Noud P.A. van Giersbergen, 2011. "Bootstrapping Subset Test Statistics in IV Regression," UvA-Econometrics Working Papers 11-08, Universiteit van Amsterdam, Dept. of Econometrics.
    14. Richard Startz & Charles Nelson & Eric Zivot, 1999. "Improved Inference for the Instrumental Variable Estimator," Working Papers 0039, University of Washington, Department of Economics.
    15. Han Zhang & Jing Qin & Sonja I. Berndt & Demetrius Albanes & Lu Deng & Mitchell H. Gail & Kai Yu, 2020. "On Mendelian randomization analysis of case‐control study," Biometrics, The International Biometric Society, vol. 76(2), pages 380-391, June.
    16. Mikusheva, Anna, 2013. "Survey on statistical inferences in weakly-identified instrumental variable models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 29(1), pages 117-131.
    17. Firmin Doko Tchatoka & Wenjie Wang, 2015. "On Bootstrap Validity for Subset Anderson-Rubin Test in IV Regressions," School of Economics and Public Policy Working Papers 2015-01, University of Adelaide, School of Economics and Public Policy.
    18. Mills, Benjamin & Moreira, Marcelo J. & Vilela, Lucas P., 2014. "Tests based on t-statistics for IV regression with weak instruments," Journal of Econometrics, Elsevier, vol. 182(2), pages 351-363.
    19. Antoine, Bertille & Lavergne, Pascal, 2023. "Identification-robust nonparametric inference in a linear IV model," Journal of Econometrics, Elsevier, vol. 235(1), pages 1-24.
    20. Michael P. Murray, 2006. "Avoiding Invalid Instruments and Coping with Weak Instruments," Journal of Economic Perspectives, American Economic Association, vol. 20(4), pages 111-132, Fall.

    More about this item

    Keywords

    weak instruments; bootstrap; confidence sets; CLR test; LIML;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qed:wpaper:1278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mark Babcock (email available below). General contact details of provider: https://edirc.repec.org/data/qedquca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.