[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/ptu/wpaper/w201032.html
   My bibliography  Save this paper

Evaluating the strength of identification in DSGE models. An a priori approach

Author

Listed:
  • Nikolay Iskrev
Abstract
This paper presents a new approach to parameter identification analysis in DSGE models wherein the strength of identification is treated as property of the underlying model and studied prior to estimation. The strength of identification reflects the empirical importance of the economic features represented by the parameters. Identification problems arise when some parameters are either nearly irrelevant or nearly redundant with respect to the aspects of reality the model is designed to explain. The strength of identification therefore is not only crucial for the estimation of models, but also has important implications for model development. The proposed measure of identification strength is based on the Fisher information matrix of DSGE models and depends on three factors: the parameter values, the set of observed variables and the sample size. By applying the proposed methodology, researchers can determine the effect of each factor on the strength of identification of individual parameters, and study how it is related to structural and statistical characteristics of the economic model. The methodology is illustrated using the medium-scale DSGE model estimated in Smets and Wouters (2007).

Suggested Citation

  • Nikolay Iskrev, 2010. "Evaluating the strength of identification in DSGE models. An a priori approach," Working Papers w201032, Banco de Portugal, Economics and Research Department.
  • Handle: RePEc:ptu:wpaper:w201032
    as

    Download full text from publisher

    File URL: https://www.bportugal.pt/sites/default/files/anexos/papers/wp201032.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Christiano, Lawrence J, 2002. "Solving Dynamic Equilibrium Models by a Method of Undetermined Coefficients," Computational Economics, Springer;Society for Computational Economics, vol. 20(1-2), pages 21-55, October.
    2. King, Robert G & Watson, Mark W, 1998. "The Solution of Singular Linear Difference Systems under Rational Expectations," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 1015-1026, November.
    3. Iskrev, Nikolay, 2010. "Local identification in DSGE models," Journal of Monetary Economics, Elsevier, vol. 57(2), pages 189-202, March.
    4. Donald W.K. Andrews & James H. Stock, 2005. "Inference with Weak Instruments," Cowles Foundation Discussion Papers 1530, Cowles Foundation for Research in Economics, Yale University.
    5. Canova, Fabio & Sala, Luca, 2009. "Back to square one: Identification issues in DSGE models," Journal of Monetary Economics, Elsevier, vol. 56(4), pages 431-449, May.
    6. Del Negro, Marco & Schorfheide, Frank, 2008. "Forming priors for DSGE models (and how it affects the assessment of nominal rigidities)," Journal of Monetary Economics, Elsevier, vol. 55(7), pages 1191-1208, October.
    7. Bowden, Roger J, 1973. "The Theory of Parametric Identification," Econometrica, Econometric Society, vol. 41(6), pages 1069-1074, November.
    8. V. V. Chari & Patrick J. Kehoe & Ellen R. McGrattan, 2009. "New Keynesian Models: Not Yet Useful for Policy Analysis," American Economic Journal: Macroeconomics, American Economic Association, vol. 1(1), pages 242-266, January.
    9. Pablo Guerrón-Quintana & Atsushi Inoue & Lutz Kilian, 2009. "Frequentist inference in weakly identified DSGE models," Working Papers 09-13, Federal Reserve Bank of Philadelphia.
    10. A. Shapiro & M. Browne, 1983. "On the investigation of local identifiability: A counterexample," Psychometrika, Springer;The Psychometric Society, vol. 48(2), pages 303-304, June.
    11. Rothenberg, Thomas J, 1971. "Identification in Parametric Models," Econometrica, Econometric Society, vol. 39(3), pages 577-591, May.
    12. Bekker, Paul A. & Pollock, D. S. G., 1986. "Identification of linear stochastic models with covariance restrictions," Journal of Econometrics, Elsevier, vol. 31(2), pages 179-208, March.
    13. Sargent, Thomas J, 1976. "The Observational Equivalence of Natural and Unnatural Rate Theories of Macroeconomics," Journal of Political Economy, University of Chicago Press, vol. 84(3), pages 631-640, June.
    14. Lawrence J. Christiano & Martin Eichenbaum & Charles L. Evans, 2005. "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 1-45, February.
    15. Blanchard, Olivier Jean & Kahn, Charles M, 1980. "The Solution of Linear Difference Models under Rational Expectations," Econometrica, Econometric Society, vol. 48(5), pages 1305-1311, July.
    16. Anderson, Gary & Moore, George, 1985. "A linear algebraic procedure for solving linear perfect foresight models," Economics Letters, Elsevier, vol. 17(3), pages 247-252.
    17. Klein, Paul, 2000. "Using the generalized Schur form to solve a multivariate linear rational expectations model," Journal of Economic Dynamics and Control, Elsevier, vol. 24(10), pages 1405-1423, September.
    18. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    19. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    20. Ledyard Tucker & Lee Cooper & William Meredith, 1972. "Obtaining squared multiple correlations from a correlation matrix which may be singular," Psychometrika, Springer;The Psychometric Society, vol. 37(2), pages 143-148, June.
    21. Sims, Christopher A, 2002. "Solving Linear Rational Expectations Models," Computational Economics, Springer;Society for Computational Economics, vol. 20(1-2), pages 1-20, October.
    22. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    23. Kim, Jinill, 2003. "Functional equivalence between intertemporal and multisectoral investment adjustment costs," Journal of Economic Dynamics and Control, Elsevier, vol. 27(4), pages 533-549, February.
    24. Frank Smets & Raf Wouters, 2003. "An Estimated Dynamic Stochastic General Equilibrium Model of the Euro Area," Journal of the European Economic Association, MIT Press, vol. 1(5), pages 1123-1175, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Blog mentions

    As found by EconAcademics.org, the blog aggregator for Economics research:
    1. Evaluating the strength of identification in DSGE models. An a priori approach
      by Christian Zimmermann in NEP-DGE blog on 2011-01-23 09:07:09

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gomes, Sandra & Iskrev, Nikolay & Mendicino, Caterina, 2017. "Monetary policy shocks: We got news!," Journal of Economic Dynamics and Control, Elsevier, vol. 74(C), pages 108-128.
    2. Francesco Bianchi & Cosmin Ilut, 2017. "Monetary/Fiscal Policy Mix and Agent's Beliefs," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 26, pages 113-139, October.
    3. Sandra Gomes, 2011. "Housing Market Dynamics: Any News?," Working Papers w201121, Banco de Portugal, Economics and Research Department.
    4. Yasuo Hirose & Atsushi Inoue, 2016. "The Zero Lower Bound and Parameter Bias in an Estimated DSGE Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(4), pages 630-651, June.
    5. Iskrev, Nikolay, 2018. "Are asset price data informative about news shocks? A DSGE perspective," Working Paper Series 2161, European Central Bank.
    6. Adolfson, Malin & Laséen, Stefan & Lindé, Jesper & Ratto, Marco, 2019. "Identification versus misspecification in New Keynesian monetary policy models," European Economic Review, Elsevier, vol. 113(C), pages 225-246.
    7. Cantore, Cristiano & Levine, Paul & Pearlman, Joseph & Yang, Bo, 2015. "CES technology and business cycle fluctuations," Journal of Economic Dynamics and Control, Elsevier, vol. 61(C), pages 133-151.
    8. Afrin, Sadia, 2020. "Does oligopolistic banking friction amplify small open economy's business cycles? Evidence from Australia," Economic Modelling, Elsevier, vol. 85(C), pages 119-138.
    9. Marianna Riggi & Sergio Santoro, 2015. "On the Slope and the Persistence of the Italian Phillips Curve," International Journal of Central Banking, International Journal of Central Banking, vol. 11(2), pages 157-197, March.
    10. Gary Koop & M. Hashem Pesaran & Ron P. Smith, 2013. "On Identification of Bayesian DSGE Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(3), pages 300-314, July.
    11. Johannes Hermanus Kemp & Hylton Hollander, 2020. "A medium-sized, open-economy, fiscal DSGE model of South Africa," WIDER Working Paper Series wp-2020-92, World Institute for Development Economic Research (UNU-WIDER).
    12. Massimo Minesso Ferrari, 2020. "The Real Effects of Endogenous Defaults on the Interbank Market," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 6(3), pages 411-439, November.
    13. Hirose, Yasuo & Kurozumi, Takushi, 2021. "Identifying News Shocks With Forecast Data," Macroeconomic Dynamics, Cambridge University Press, vol. 25(6), pages 1442-1471, September.
    14. Ercolani, Valerio & Valle e Azevedo, João, 2014. "The effects of public spending externalities," Journal of Economic Dynamics and Control, Elsevier, vol. 46(C), pages 173-199.
    15. Anna Mikusheva, 2014. "Estimation of dynamic stochastic general equilibrium models (in Russian)," Quantile, Quantile, issue 12, pages 1-21, February.
    16. Iskrev, Nikolay, 2010. "Local identification in DSGE models," Journal of Monetary Economics, Elsevier, vol. 57(2), pages 189-202, March.
    17. Nikolay, Iskrev, 2014. "Choosing the variables to estimate singular DSGE models: Comment," Dynare Working Papers 41, CEPREMAP.
    18. Di Bartolomeo, Giovanni & Di Pietro, Marco & Beqiraj, Elton, 2020. "Price and wage inflation persistence across countries and monetary regimes," Journal of International Money and Finance, Elsevier, vol. 109(C).
    19. Afrin, Sadia, 2017. "The role of financial shocks in business cycles with a liability side financial friction," Economic Modelling, Elsevier, vol. 64(C), pages 249-269.
    20. Iskrev, Nikolay, 2019. "On the sources of information about latent variables in DSGE models," European Economic Review, Elsevier, vol. 119(C), pages 318-332.
    21. Mendicino, Caterina, 2012. "On the amplification role of collateral constraints," Economics Letters, Elsevier, vol. 117(2), pages 429-435.
    22. Elton Beqiraj & Massimiliano Tancioni, 2014. "Evaluating Labor Market Targeted Fiscal Policies inHigh Unemployment EZ Countries," Working Papers in Public Economics 165, Department of Economics and Law, Sapienza University of Roma.
    23. Isaiah Andrews & Anna Mikusheva, 2014. "Weak Identification in Maximum Likelihood: A Question of Information," American Economic Review, American Economic Association, vol. 104(5), pages 195-199, May.
    24. Normann Rion, 2020. "Fluctuations in a Dual Labor Market," Working Papers halshs-02570540, HAL.
    25. Herranz, Moisés Meroño & Turino, Francesco, 2023. "Tax evasion, fiscal policy and public debt: Evidence from Spain," Economic Systems, Elsevier, vol. 47(3).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iskrev, Nikolay, 2010. "Local identification in DSGE models," Journal of Monetary Economics, Elsevier, vol. 57(2), pages 189-202, March.
    2. Pedro Chaim & Márcio Poletti Laurini, 2022. "Data Cloning Estimation and Identification of a Medium-Scale DSGE Model," Stats, MDPI, vol. 6(1), pages 1-13, December.
    3. Dufour, Jean-Marie & Khalaf, Lynda & Kichian, Maral, 2013. "Identification-robust analysis of DSGE and structural macroeconomic models," Journal of Monetary Economics, Elsevier, vol. 60(3), pages 340-350.
    4. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    5. Taremi, Mohammad & Esksndari, Farzad & Bameni Moghadam, Mohammad, 2016. "Identifiability of Dynamic Stochastic General Equilibrium Models with Covariance Restrictions," Journal of Money and Economy, Monetary and Banking Research Institute, Central Bank of the Islamic Republic of Iran, vol. 11(3), pages 225-243, July.
    6. Andrei Polbin & Sergey Drobyshevsky, 2014. "Developing a Dynamic Stochastic Model of General Equilibrium for the Russian Economy," Research Paper Series, Gaidar Institute for Economic Policy, issue 166P, pages 156-156.
    7. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 113-172.
    8. Gorodnichenko, Yuriy & Ng, Serena, 2010. "Estimation of DSGE models when the data are persistent," Journal of Monetary Economics, Elsevier, vol. 57(3), pages 325-340, April.
    9. Adolfson, Malin & Laséen, Stefan & Lindé, Jesper & Ratto, Marco, 2019. "Identification versus misspecification in New Keynesian monetary policy models," European Economic Review, Elsevier, vol. 113(C), pages 225-246.
    10. Schmidt, Sebastian & Wieland, Volker, 2013. "The New Keynesian Approach to Dynamic General Equilibrium Modeling: Models, Methods and Macroeconomic Policy Evaluation," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 1439-1512, Elsevier.
    11. Zhongjun Qu, 2011. "Inference and Speci?cation Testing in DSGE Models with Possible Weak Identification," Boston University - Department of Economics - Working Papers Series WP2011-058, Boston University - Department of Economics.
    12. Gary Koop & M. Hashem Pesaran & Ron P. Smith, 2013. "On Identification of Bayesian DSGE Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(3), pages 300-314, July.
    13. Hürtgen, Patrick, 2014. "Consumer misperceptions, uncertain fundamentals, and the business cycle," Journal of Economic Dynamics and Control, Elsevier, vol. 40(C), pages 279-292.
    14. Inoue, Atsushi & Kuo, Chun-Hung & Rossi, Barbara, 2020. "Identifying the sources of model misspecification," Journal of Monetary Economics, Elsevier, vol. 110(C), pages 1-18.
    15. Corbo, Vesna & Strid, Ingvar, 2020. "MAJA: A two-region DSGE model for Sweden and its main trading partners," Working Paper Series 391, Sveriges Riksbank (Central Bank of Sweden).
    16. Özer Karagedikli & Troy Matheson & Christie Smith & Shaun P. Vahey, 2010. "RBCs AND DSGEs: THE COMPUTATIONAL APPROACH TO BUSINESS CYCLE THEORY AND EVIDENCE," Journal of Economic Surveys, Wiley Blackwell, vol. 24(1), pages 113-136, February.
    17. Dennis, Richard, 2004. "Solving for optimal simple rules in rational expectations models," Journal of Economic Dynamics and Control, Elsevier, vol. 28(8), pages 1635-1660, June.
    18. Morris, Stephen D., 2017. "DSGE pileups," Journal of Economic Dynamics and Control, Elsevier, vol. 74(C), pages 56-86.
    19. Meyer-Gohde, Alexander, 2010. "Linear rational-expectations models with lagged expectations: A synthetic method," Journal of Economic Dynamics and Control, Elsevier, vol. 34(5), pages 984-1002, May.
    20. Ivashchenko, Sergey & Mutschler, Willi, 2020. "The effect of observables, functional specifications, model features and shocks on identification in linearized DSGE models," Economic Modelling, Elsevier, vol. 88(C), pages 280-292.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ptu:wpaper:w201032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: DEE-NTD (email available below). General contact details of provider: https://edirc.repec.org/data/bdpgvpt.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.