[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/35738.html
   My bibliography  Save this paper

A gravity model of mortality rates for two related populations

Author

Listed:
  • Dowd, Kevin
  • Cairns, Andrew
  • Blake, David
  • Coughlan, Guy
  • Khalaf-Allah, Marwa
Abstract
The mortality rate dynamics between two related but different-sized populations are modeled consistently using a new stochastic mortality model that we call the gravity model. The larger population is modeled independently, and the smaller population is modeled in terms of spreads (or deviations) relative to the evolution of the former, but the spreads in the period and cohort effects between the larger and smaller populations depend on gravity or spread reversion parameters for the two effects. The larger the two gravity parameters, the more strongly the smaller population’s mortality rates move in line with those of the larger population in the long run. This is important where it is believed that the mortality rates between related populations should not diverge over time on grounds of biological reasonableness. The model is illustrated using an extension of the Age-Period-Cohort model and mortality rate data for English and Welsh males representing a large population and the Continuous Mortality Investigation assured male lives representing a smaller related population.

Suggested Citation

  • Dowd, Kevin & Cairns, Andrew & Blake, David & Coughlan, Guy & Khalaf-Allah, Marwa, 2011. "A gravity model of mortality rates for two related populations," MPRA Paper 35738, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:35738
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/35738/1/MPRA_paper_35738.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin & Coughlan, Guy D. & Epstein, David & Khalaf-Allah, Marwa, 2011. "Mortality density forecasts: An analysis of six stochastic mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 355-367, May.
    2. Andrew Cairns & David Blake & Kevin Dowd & Guy Coughlan & David Epstein & Alen Ong & Igor Balevich, 2009. "A Quantitative Comparison of Stochastic Mortality Models Using Data From England and Wales and the United States," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(1), pages 1-35.
    3. Coughlan, Guy & Khalaf-Allah, Marwa & Ye, Yijing & Kumar, Sumit & Cairns, Andrew & Blake, David & Dowd, Kevin, 2011. "Longevity hedging 101: A framework for longevity basis risk analysis and hedge effectiveness," MPRA Paper 35743, University Library of Munich, Germany.
    4. Booth, H. & Tickle, L., 2008. "Mortality Modelling and Forecasting: a Review of Methods," Annals of Actuarial Science, Cambridge University Press, vol. 3(1-2), pages 3-43, September.
    5. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin & Coughlan, Guy D. & Khalaf-Allah, Marwa, 2011. "Bayesian Stochastic Mortality Modelling for Two Populations," ASTIN Bulletin, Cambridge University Press, vol. 41(1), pages 29-59, May.
    6. Johnny Li & Mary Hardy, 2011. "Measuring Basis Risk in Longevity Hedges," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(2), pages 177-200.
    7. Nan Li & Ronald Lee, 2005. "Coherent mortality forecasts for a group of populations: An extension of the lee-carter method," Demography, Springer;Population Association of America (PAA), vol. 42(3), pages 575-594, August.
    8. Guy Coughlan & Marwa Khalaf-Allah & Yijing Ye & Sumit Kumar & Andrew Cairns & David Blake & Kevin Dowd, 2011. "Longevity Hedging 101," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(2), pages 150-176.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    2. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    3. Tan, Chong It & Li, Jackie & Li, Johnny Siu-Hang & Balasooriya, Uditha, 2014. "Parametric mortality indexes: From index construction to hedging strategies," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 285-299.
    4. Liu, Yanxin & Li, Johnny Siu-Hang, 2018. "A strategy for hedging risks associated with period and cohort effects using q-forwards," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 267-285.
    5. Hunt, Andrew & Blake, David, 2018. "Identifiability, cointegration and the gravity model," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 360-368.
    6. Andrew J.G. Cairns & Malene Kallestrup-Lamb & Carsten P.T. Rosenskjold & David Blake & Kevin Dowd, 2016. "Modelling Socio-Economic Differences in the Mortality of Danish Males Using a New Affluence Index," CREATES Research Papers 2016-14, Department of Economics and Business Economics, Aarhus University.
    7. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2016. "Coherent modeling of male and female mortality using Lee–Carter in a complex number framework," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 130-137.
    8. Liu, Yanxin & Li, Johnny Siu-Hang, 2016. "It’s all in the hidden states: A longevity hedging strategy with an explicit measure of population basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 301-319.
    9. Danesi, Ivan Luciano & Haberman, Steven & Millossovich, Pietro, 2015. "Forecasting mortality in subpopulations using Lee–Carter type models: A comparison," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 151-161.
    10. James Risk & Michael Ludkovski, 2015. "Statistical Emulators for Pricing and Hedging Longevity Risk Products," Papers 1508.00310, arXiv.org, revised Sep 2015.
    11. Uditha Balasooriya & Johnny Siu-Hang Li & Jackie Li, 2020. "The Impact of Model Uncertainty on Index-Based Longevity Hedging and Measurement of Longevity Basis Risk," Risks, MDPI, vol. 8(3), pages 1-27, August.
    12. Selin Ozen & c{S}ule c{S}ahin, 2021. "A Two-Population Mortality Model to Assess Longevity Basis Risk," Papers 2101.06690, arXiv.org.
    13. Li, Johnny Siu-Hang & Liu, Yanxin, 2021. "Recent declines in life expectancy: Implication on longevity risk hedging," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 376-394.
    14. Andrew J.G. Cairns & Kevin Dowd & David Blake & Guy D. Coughlan, 2014. "Longevity hedge effectiveness: a decomposition," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 217-235, February.
    15. Selin Özen & Şule Şahin, 2021. "A Two-Population Mortality Model to Assess Longevity Basis Risk," Risks, MDPI, vol. 9(2), pages 1-19, February.
    16. Hunt, Andrew & Blake, David, 2015. "Modelling longevity bonds: Analysing the Swiss Re Kortis bond," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 12-29.
    17. Norkhairunnisa Redzwan & Rozita Ramli, 2022. "A Bibliometric Analysis of Research on Stochastic Mortality Modelling and Forecasting," Risks, MDPI, vol. 10(10), pages 1-17, October.
    18. Li, Jackie & Haberman, Steven, 2015. "On the effectiveness of natural hedging for insurance companies and pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 286-297.
    19. Risk, J. & Ludkovski, M., 2016. "Statistical emulators for pricing and hedging longevity risk products," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 45-60.
    20. Ahmadi, Seyed Saeed & Li, Johnny Siu-Hang, 2014. "Coherent mortality forecasting with generalized linear models: A modified time-transformation approach," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 194-221.

    More about this item

    Keywords

    Gravity model; mortality rates; related populations;
    All these keywords.

    JEL classification:

    • J11 - Labor and Demographic Economics - - Demographic Economics - - - Demographic Trends, Macroeconomic Effects, and Forecasts

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:35738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.