[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/pen/papers/11-031.html
   My bibliography  Save this paper

On the Network Topology of Variance Decompositions: Measuring the Connectedness of Financial Firms

Author

Listed:
  • Francis X. Diebold

    (Department of Economics, University of Pennsylvania)

  • Kamil Yılmaz

    (Department of Economics, Koç University)

Abstract
We propose several connectedness measures built from pieces of variance decompositions, and we argue that they provide natural and insightful measures of connectedness among financial asset returns and volatilities. We also show that variance decompositions define weighted, directed networks, so that our connectedness measures are intimately-related to key measures of connectedness used in the network literature. Building on these insights, we track both average and daily time-varying connectedness of major U.S. financial institutions' stock return volatilities in recent years, including during the financial crisis of 2007-2008.

Suggested Citation

  • Francis X. Diebold & Kamil Yılmaz, 2011. "On the Network Topology of Variance Decompositions: Measuring the Connectedness of Financial Firms," PIER Working Paper Archive 11-031, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
  • Handle: RePEc:pen:papers:11-031
    as

    Download full text from publisher

    File URL: https://economics.sas.upenn.edu/sites/default/files/filevault/11-031.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. repec:cup:cbooks:9780511771576 is not listed on IDEAS
    2. Francis X. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
    3. repec:fip:fedhpr:y:2010:i:may:p:65-71 is not listed on IDEAS
    4. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    5. Allen, Franklin & Babus, Ana & Carletti, Elena, 2012. "Asset commonality, debt maturity and systemic risk," Journal of Financial Economics, Elsevier, vol. 104(3), pages 519-534.
    6. Viral V. Acharya & Lasse H. Pedersen & Thomas Philippon & Matthew Richardson, 2017. "Measuring Systemic Risk," The Review of Financial Studies, Society for Financial Studies, vol. 30(1), pages 2-47.
    7. Härdle, Wolfgang Karl & Okhrin, Ostap & Okhrin, Yarema, 2010. "Time varying hierarchical archimedean copulae," SFB 649 Discussion Papers 2010-018, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    8. repec:taf:jnlbes:v:30:y:2012:i:2:p:212-228 is not listed on IDEAS
    9. White,Halbert, 1996. "Estimation, Inference and Specification Analysis," Cambridge Books, Cambridge University Press, number 9780521574464.
    10. Geweke, John & Koop, Gary & van Dijk, Herman (ed.), 2011. "The Oxford Handbook of Bayesian Econometrics," OUP Catalogue, Oxford University Press, number 9780199559084.
    11. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    12. Allen, Franklin & Babus, Ana & Carletti, Elena, 2010. "Financial Connections and Systemic Risk," Working Papers 10-20, University of Pennsylvania, Wharton School, Weiss Center.
    13. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    14. Bech, Morten L. & Atalay, Enghin, 2010. "The topology of the federal funds market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5223-5246.
    15. Dufour, Jean-Marie & Taamouti, Abderrahim, 2010. "Short and long run causality measures: Theory and inference," Journal of Econometrics, Elsevier, vol. 154(1), pages 42-58, January.
    16. Jean-Marie Dufour & Eric Renault, 1998. "Short Run and Long Run Causality in Time Series: Theory," Econometrica, Econometric Society, vol. 66(5), pages 1099-1126, September.
    17. Hansen, Peter R. & Lunde, Asger, 2014. "Estimating The Persistence And The Autocorrelation Function Of A Time Series That Is Measured With Error," Econometric Theory, Cambridge University Press, vol. 30(1), pages 60-93, February.
    18. Marcella Lucchetta & Mr. Gianni De Nicolo, 2012. "Systemic Real and Financial Risks: Measurement, Forecasting, and Stress Testing," IMF Working Papers 2012/058, International Monetary Fund.
    19. Bernanke, Ben S., 1986. "Alternative explanations of the money-income correlation," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 25(1), pages 49-99, January.
    20. Easley,David & Kleinberg,Jon, 2010. "Networks, Crowds, and Markets," Cambridge Books, Cambridge University Press, number 9780521195331, September.
    21. Viral Acharya & Robert Engle & Matthew Richardson, 2012. "Capital Shortfall: A New Approach to Ranking and Regulating Systemic Risks," American Economic Review, American Economic Association, vol. 102(3), pages 59-64, May.
    22. Nikolaus Hautsch & Julia Schaumburg & Melanie Schienle, 2015. "Financial Network Systemic Risk Contributions," Review of Finance, European Finance Association, vol. 19(2), pages 685-738.
    23. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    24. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    25. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    26. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    27. Granger Clive W.J., 2008. "Non-Linear Models: Where Do We Go Next - Time Varying Parameter Models?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(3), pages 1-11, September.
    28. Daron Acemoglu & Asuman Ozdaglar & Alireza Tahbaz-Salehi, 2010. "Cascades in Networks and Aggregate Volatility," NBER Working Papers 16516, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diebold, Francis X. & Yılmaz, Kamil, 2023. "Reprint of: On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 234(S), pages 70-90.
    2. Diebold, Francis X. & Yilmaz, Kamil, 2015. "Financial and Macroeconomic Connectedness: A Network Approach to Measurement and Monitoring," OUP Catalogue, Oxford University Press, number 9780199338306.
    3. Yu Chen & Jie Hu & Weiping Zhang, 2020. "Too Connected to Fail? Evidence from a Chinese Financial Risk Spillover Network," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 28(6), pages 78-100, November.
    4. Mert Demirer & Francis X. Diebold & Laura Liu & Kamil Yilmaz, 2018. "Estimating global bank network connectedness," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(1), pages 1-15, January.
    5. Li, Youwei & Waterworth, James, 2016. "Eurozone network connectedness during calm and crisis: evidence from the MTS platform for interdealer trading of European sovereign debt," MPRA Paper 71221, University Library of Munich, Germany.
    6. Wang, Gang-Jin & Xie, Chi & Zhao, Longfeng & Jiang, Zhi-Qiang, 2018. "Volatility connectedness in the Chinese banking system: Do state-owned commercial banks contribute more?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 57(C), pages 205-230.
    7. Wu, Fei & Zhang, Dayong & Zhang, Zhiwei, 2019. "Connectedness and risk spillovers in China’s stock market: A sectoral analysis," Economic Systems, Elsevier, vol. 43(3).
    8. Francis X. Diebold & Laura Liu & Kamil Yilmaz, 2018. "Commodity Connectedness," Central Banking, Analysis, and Economic Policies Book Series, in: Enrique G. Mendoza & Ernesto Pastén & Diego Saravia (ed.),Monetary Policy and Global Spillovers: Mechanisms, Effects and Policy Measures, edition 1, volume 25, chapter 4, pages 097-136, Central Bank of Chile.
    9. Jozef Barunik & Mattia Bevilacqua & Radu Tunaru, 2022. "Asymmetric Network Connectedness of Fears," The Review of Economics and Statistics, MIT Press, vol. 104(6), pages 1304-1316, November.
    10. Moratis, Georgios & Sakellaris, Plutarchos, 2021. "Measuring the systemic importance of banks," Journal of Financial Stability, Elsevier, vol. 54(C).
    11. Matteo Barigozzi & Marc Hallin, 2015. "Networks, Dynamic Factors, and the Volatility Analysis of High-Dimensional Financial Series," Papers 1510.05118, arXiv.org, revised Jul 2016.
    12. Francis X. Diebold & Kamil Yilmaz, 2022. "On the Past, Present, and Future of the Diebold-Yilmaz Approach to Dynamic Network Connectedness," Koç University-TUSIAD Economic Research Forum Working Papers 2207, Koc University-TUSIAD Economic Research Forum.
    13. Honghai Yu & Wencong Sun & Xiangting Ye & Libing Fang, 2019. "Measuring the increasing connectedness of Chinese assets with global assets: using a variance decompositions method," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(5), pages 1261-1290, March.
    14. Fengler, Matthias R. & Gisler, Katja I.M., 2015. "A variance spillover analysis without covariances: What do we miss?," Journal of International Money and Finance, Elsevier, vol. 51(C), pages 174-195.
    15. Egger, Peter H. & Li, Jie & Zhu, Jiaqing, 2023. "The network and own effects of global-systemically-important-bank designations," Journal of International Money and Finance, Elsevier, vol. 136(C).
    16. Hamill, Philip A. & Li, Youwei & Pantelous, Athanasios A. & Vigne, Samuel A. & Waterworth, James, 2021. "Was a deterioration in ‘connectedness’ a leading indicator of the European sovereign debt crisis?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    17. Wen, Tiange & Wang, Gang-Jin, 2020. "Volatility connectedness in global foreign exchange markets," Journal of Multinational Financial Management, Elsevier, vol. 54(C).
    18. Singh, Vipul Kumar & Nishant, Shreyank & Kumar, Pawan, 2018. "Dynamic and directional network connectedness of crude oil and currencies: Evidence from implied volatility," Energy Economics, Elsevier, vol. 76(C), pages 48-63.
    19. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    20. Francis X. Diebold & Kamil Yilmaz, 2016. "Trans-Atlantic Equity Volatility Connectedness: U.S. and European Financial Institutions, 2004–2014," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 81-127.

    More about this item

    Keywords

    Risk measurement; risk management; portfolio allocation; market risk; credit risk; systemic risk; asset markets; degree distribution;
    All these keywords.

    JEL classification:

    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • G2 - Financial Economics - - Financial Institutions and Services

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pen:papers:11-031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Administrator (email available below). General contact details of provider: https://edirc.repec.org/data/deupaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.