[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/pav/demwpp/demwp0064.html
   My bibliography  Save this paper

Performance of credit risk prediction models via proper loss functions

Author

Listed:
  • Silvia Figini

    (Department of Political and Social Sciences, University of Pavia)

  • Mario Maggi

    (Department of Economics and Management, University of Pavia)

Abstract
The performance of predictions models can be assessed using a variety of methods and metrics. Several new measures have recently been proposed that can be seen as refinements of discrimination measures, including variants of the AUC (Area Under the ROC curve), such as the H index. It is widely recognized that AUC suffers from lack of coherency especially when ROC curves cross. On the other hand, the H index requires subjective choices. In our opinion the problem of model comparison should be more adequately handled using a different approach. The main contribution of this paper is to evaluate the performance of prediction models using proper loss function. In order to compare how our approach works with respect to classical measures employed in model comparison, we propose a simulation studies, as well as a real application on credit risk data.

Suggested Citation

  • Silvia Figini & Mario Maggi, 2014. "Performance of credit risk prediction models via proper loss functions," DEM Working Papers Series 064, University of Pavia, Department of Economics and Management.
  • Handle: RePEc:pav:demwpp:demwp0064
    as

    Download full text from publisher

    File URL: http://dem-web.unipv.it/web/docs/dipeco/quad/ps/RePEc/pav/demwpp/DEMWP0064.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Crook, Jonathan N. & Edelman, David B. & Thomas, Lyn C., 2007. "Recent developments in consumer credit risk assessment," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1447-1465, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonathan K. Budd & Peter G. Taylor, 2015. "Calculating optimal limits for transacting credit card customers," Papers 1506.05376, arXiv.org, revised Aug 2015.
    2. Barbara CAVALLETTI & Corrado LAGAZIO & Daniela VANDONE, 2008. "Il credito al consumo in Italia: benessere economico o fragilita’ finanziaria?," Departmental Working Papers 2008-24, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    3. Rasa Kanapickiene & Renatas Spicas, 2019. "Credit Risk Assessment Model for Small and Micro-Enterprises: The Case of Lithuania," Risks, MDPI, vol. 7(2), pages 1-23, June.
    4. Fernando A. F. Ferreira & Ronald W. Spahr & Irina F. M. D. Gavancha & Amali Çipi, 2013. "Readjusting trade-offs among criteria in internal ratings of credit-scoring: an empirical essay of risk analysis in mortgage loans," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 14(4), pages 715-740, September.
    5. A?da Kammoun & Imen Triki, 2016. "Credit Scoring Models for a Tunisian Microfinance Institution: Comparison between Artificial Neural Network and Logistic Regression," Review of Economics & Finance, Better Advances Press, Canada, vol. 6, pages 61-78, February.
    6. Piccoli, Pedro, 2022. "Valuating consumer credit portfolios," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 3(3).
    7. K Rajaratnam & P Beling & G Overstreet, 2010. "Scoring decisions in the context of economic uncertainty," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(3), pages 421-429, March.
    8. Huseyin Ince & Bora Aktan, 2009. "A comparison of data mining techniques for credit scoring in banking: A managerial perspective," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 10(3), pages 233-240, March.
    9. Crone, Sven F. & Finlay, Steven, 2012. "Instance sampling in credit scoring: An empirical study of sample size and balancing," International Journal of Forecasting, Elsevier, vol. 28(1), pages 224-238.
    10. Michael Bucker & Gero Szepannek & Alicja Gosiewska & Przemyslaw Biecek, 2020. "Transparency, Auditability and eXplainability of Machine Learning Models in Credit Scoring," Papers 2009.13384, arXiv.org.
    11. Pierluigi Bologna & Maddalena Galardo, 2022. "Calibrating the countercyclical capital buffer for Italy," Questioni di Economia e Finanza (Occasional Papers) 679, Bank of Italy, Economic Research and International Relations Area.
    12. Singh, Ramendra Pratap & Singh, Ramendra & Mishra, Prashant, 2021. "Does managing customer accounts receivable impact customer relationships, and sales performance? An empirical investigation," Journal of Retailing and Consumer Services, Elsevier, vol. 60(C).
    13. Charitou, Andreas & Dionysiou, Dionysia & Lambertides, Neophytos & Trigeorgis, Lenos, 2013. "Alternative bankruptcy prediction models using option-pricing theory," Journal of Banking & Finance, Elsevier, vol. 37(7), pages 2329-2341.
    14. Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
    15. Guotai Chi & Zhipeng Zhang, 2017. "Multi Criteria Credit Rating Model for Small Enterprise Using a Nonparametric Method," Sustainability, MDPI, vol. 9(10), pages 1-23, October.
    16. Mehmood, Mian Saqib & Sheraz, Iram & Mehmood, Asif & G. Mujtaba, Bahaudin, 2017. "Empirical Examination for Operational and Credit Risk Perspective – A Case of Commercial Banks of Pakistan," MPRA Paper 80491, University Library of Munich, Germany.
    17. Trivedi, Shrawan Kumar, 2020. "A study on credit scoring modeling with different feature selection and machine learning approaches," Technology in Society, Elsevier, vol. 63(C).
    18. Lee, Yongwoong & Rösch, Daniel & Scheule, Harald, 2016. "Accuracy of mortgage portfolio risk forecasts during financial crises," European Journal of Operational Research, Elsevier, vol. 249(2), pages 440-456.
    19. Dong-Her Shih & Ting-Wei Wu & Po-Yuan Shih & Nai-An Lu & Ming-Hung Shih, 2022. "A Framework of Global Credit-Scoring Modeling Using Outlier Detection and Machine Learning in a P2P Lending Platform," Mathematics, MDPI, vol. 10(13), pages 1-13, June.
    20. Ting Sun & Miklos A. Vasarhelyi, 2018. "Predicting credit card delinquencies: An application of deep neural networks," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 25(4), pages 174-189, October.

    More about this item

    Keywords

    Model Comparison; AUC; H index; Loss Function; Proper Scoring Rules; Credit Risk;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pav:demwpp:demwp0064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alice Albonico (email available below). General contact details of provider: https://edirc.repec.org/data/dppavit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.