[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/osf/socarx/7fxjz.html
   My bibliography  Save this paper

Street Network Models and Measures for Every U.S. City, County, Urbanized Area, Census Tract, and Zillow-Defined Neighborhood

Author

Listed:
  • Boeing, Geoff

    (Northeastern University)

Abstract
OpenStreetMap provides a valuable crowd-sourced database of raw geospatial data for constructing models of urban street networks for scientific analysis. This paper reports results from a research project that collected raw street network data from OpenStreetMap using the Python-based OSMnx software for every U.S. city and town, county, urbanized area, census tract, and Zillow-defined neighborhood. It constructed nonplanar directed multigraphs for each and analyzed their structural and morphological characteristics. The resulting data repository contains over 110,000 processed, cleaned street network graphs (which in turn comprise over 55 million nodes and over 137 million edges) at various scales—comprehensively covering the entire U.S.—archived as reusable open-source GraphML files, node/edge lists, and GIS shapefiles that can be immediately loaded and analyzed in standard tools such as ArcGIS, QGIS, NetworkX, graph-tool, igraph, or Gephi. The repository also contains measures of each network’s metric and topological characteristics common in urban design, transportation planning, civil engineering, and network science. No other such dataset exists. These data offer researchers and practitioners a new ability to quickly and easily conduct graph-theoretic circulation network analysis anywhere in the U.S. using standard, free, open-source tools.

Suggested Citation

  • Boeing, Geoff, 2019. "Street Network Models and Measures for Every U.S. City, County, Urbanized Area, Census Tract, and Zillow-Defined Neighborhood," SocArXiv 7fxjz, Center for Open Science.
  • Handle: RePEc:osf:socarx:7fxjz
    DOI: 10.31219/osf.io/7fxjz
    as

    Download full text from publisher

    File URL: https://osf.io/download/5c797616773b2d00170235b5/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/7fxjz?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Geoff Boeing, 2020. "A multi-scale analysis of 27,000 urban street networks: Every US city, town, urbanized area, and Zillow neighborhood," Environment and Planning B, , vol. 47(4), pages 590-608, May.
    2. Boeing, Geoff, 2018. "Measuring the Complexity of Urban Form and Design," SocArXiv bxhrz, Center for Open Science.
    3. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    4. David J Giacomin & David M Levinson, 2015. "Road network circuity in metropolitan areas," Environment and Planning B, , vol. 42(6), pages 1040-1053, November.
    5. Pavithra Parthasarathi & Hartwig Hochmair & David Levinson, 2015. "Street network structure and household activity spaces," Urban Studies, Urban Studies Journal Limited, vol. 52(6), pages 1090-1112, May.
    6. Pierre Dessemontet & Vincent Kaufmann & Christophe Jemelin, 2010. "Switzerland as a Single Metropolitan Area? A Study of its Commuting Network," Urban Studies, Urban Studies Journal Limited, vol. 47(13), pages 2785-2802, November.
    7. Jaewoo Lee & Keemin Sohn, 2014. "Identifying the Impact on Land Prices of Replacing At-grade or Elevated Railways with Underground Subways in the Seoul Metropolitan Area," Urban Studies, Urban Studies Journal Limited, vol. 51(1), pages 44-62, January.
    8. David Levinson, 2012. "Network Structure and City Size," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-11, January.
    9. Jorge Gil, 2017. "Street network analysis “edge effects†: Examining the sensitivity of centrality measures to boundary conditions," Environment and Planning B, , vol. 44(5), pages 819-836, September.
    10. Boeing, Geoff, 2017. "OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks," SocArXiv q86sd, Center for Open Science.
    11. Jiang, Bin, 2007. "A topological pattern of urban street networks: Universality and peculiarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 647-655.
    12. Porta, Sergio & Crucitti, Paolo & Latora, Vito, 2006. "The network analysis of urban streets: A dual approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 853-866.
    13. Geoff Boeing, 2020. "Planarity and street network representation in urban form analysis," Environment and Planning B, , vol. 47(5), pages 855-869, June.
    14. J. Buhl & J. Gautrais & N. Reeves & R. V. Solé & S. Valverde & P. Kuntz & G. Theraulaz, 2006. "Topological patterns in street networks of self-organized urban settlements," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 49(4), pages 513-522, February.
    15. Skyler J. Cranmer & Philip Leifeld & Scott D. McClurg & Meredith Rolfe, 2017. "Navigating the Range of Statistical Tools for Inferential Network Analysis," American Journal of Political Science, John Wiley & Sons, vol. 61(1), pages 237-251, January.
    16. Sergio Porta & Vito Latora & Fahui Wang & Salvador Rueda & Emanuele Strano & Salvatore Scellato & Alessio Cardillo & Eugenio Belli & Francisco CÃ rdenas & Berta Cormenzana & Laura Latora, 2012. "Street Centrality and the Location of Economic Activities in Barcelona," Urban Studies, Urban Studies Journal Limited, vol. 49(7), pages 1471-1488, May.
    17. Yang Xiao & Chris Webster & Scott Orford, 2016. "Identifying house price effects of changes in urban street configuration: An empirical study in Nanjing, China," Urban Studies, Urban Studies Journal Limited, vol. 53(1), pages 112-131, January.
    18. Alessandro Vespignani, 2018. "Twenty years of network science," Nature, Nature, vol. 558(7711), pages 528-529, June.
    19. Boeing, Geoff, 2019. "The Morphology and Circuity of Walkable and Drivable Street Networks," SocArXiv edj2s, Center for Open Science.
    20. Paul L. Knight & Wesley E. Marshall, 2015. "The metrics of street network connectivity: their inconsistencies," Journal of Urbanism: International Research on Placemaking and Urban Sustainability, Taylor & Francis Journals, vol. 8(3), pages 241-259, September.
    21. Bin Jiang & Christophe Claramunt, 2004. "Topological Analysis of Urban Street Networks," Environment and Planning B, , vol. 31(1), pages 151-162, February.
    22. Emanuele Strano & Matheus Viana & Luciano da Fontoura Costa & Alessio Cardillo & Sergio Porta & Vito Latora, 2013. "Urban Street Networks, a Comparative Analysis of Ten European Cities," Environment and Planning B, , vol. 40(6), pages 1071-1086, December.
    23. Chen Zhong & Markus Schläpfer & Stefan Müller Arisona & Michael Batty & Carlo Ratti & Gerhard Schmitt, 2017. "Revealing centrality in the spatial structure of cities from human activity patterns," Urban Studies, Urban Studies Journal Limited, vol. 54(2), pages 437-455, February.
    24. S. Chan & R. Donner & S. Lämmer, 2011. "Urban road networks — spatial networks with universal geometric features?," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 84(4), pages 563-577, December.
    25. Boeing, Geoff, 2017. "Methods and Measures for Analyzing Complex Street Networks and Urban Form," SocArXiv 93h82, Center for Open Science.
    26. Stephen Marshall & Jorge Gil & Karl Kropf & Martin Tomko & Lucas Figueiredo, 2018. "Street Network Studies: from Networks to Models and their Representations," Networks and Spatial Economics, Springer, vol. 18(3), pages 735-749, September.
    27. Amir Hajrasouliha & Li Yin, 2015. "The impact of street network connectivity on pedestrian volume," Urban Studies, Urban Studies Journal Limited, vol. 52(13), pages 2483-2497, October.
    28. A. P. Masucci & D. Smith & A. Crooks & M. Batty, 2009. "Random planar graphs and the London street network," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(2), pages 259-271, September.
    29. Sergio Porta & Ombretta Romice & J Alexander Maxwell & Peter Russell & Darren Baird, 2014. "Alterations in scale: Patterns of change in main street networks across time and space," Urban Studies, Urban Studies Journal Limited, vol. 51(16), pages 3383-3400, December.
    30. Mordechai Haklay, 2010. "How Good is Volunteered Geographical Information? A Comparative Study of OpenStreetMap and Ordnance Survey Datasets," Environment and Planning B, , vol. 37(4), pages 682-703, August.
    31. Manfred M. Fischer & Peter Nijkamp (ed.), 2014. "Handbook of Regional Science," Springer Books, Springer, edition 127, number 978-3-642-23430-9, December.
    32. Boeing, Geoff, 2018. "Urban Spatial Order: Street Network Orientation, Configuration, and Entropy," SocArXiv qj3p5, Center for Open Science.
    33. Carlo Ratti, 2004. "Space Syntax: Some Inconsistencies," Environment and Planning B, , vol. 31(4), pages 487-499, August.
    34. M. T. Gastner & M. E.J. Newman, 2006. "The spatial structure of networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 49(2), pages 247-252, January.
    35. Sergio Porta & Paolo Crucitti & Vito Latora, 2006. "The Network Analysis of Urban Streets: A Primal Approach," Environment and Planning B, , vol. 33(5), pages 705-725, October.
    36. Mark W. Horner & Alan T. Murray, 2002. "Excess Commuting and the Modifiable Areal Unit Problem," Urban Studies, Urban Studies Journal Limited, vol. 39(1), pages 131-139, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bowater, David & Stefanakis, Emmanuel, 2023. "Extending the Adapted PageRank Algorithm centrality model for urban street networks using non-local random walks," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    2. Md Amiruzzaman & Ye Zhao & Stefanie Amiruzzaman & Aryn C. Karpinski & Tsung Heng Wu, 2023. "An AI-based framework for studying visual diversity of urban neighborhoods and its relationship with socio-demographic variables," Journal of Computational Social Science, Springer, vol. 6(1), pages 315-337, April.
    3. Karolina Dudzic-Gyurkovich, 2023. "Study of Centrality Measures in the Network of Green Spaces in the City of Krakow," Sustainability, MDPI, vol. 15(18), pages 1-30, September.
    4. Nir Kaplan & Itzhak Omer, 2022. "Multiscale Accessibility—A New Perspective of Space Structuration," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    5. Nir Kaplan & David Burg & Itzhak Omer, 2022. "Multiscale accessibility and urban performance," Environment and Planning B, , vol. 49(2), pages 687-703, February.
    6. Boeing, Geoff, 2020. "Street Network Models and Indicators for Every Urban Area in the World," SocArXiv f2dqc, Center for Open Science.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geoff Boeing, 2020. "Planarity and street network representation in urban form analysis," Environment and Planning B, , vol. 47(5), pages 855-869, June.
    2. Boeing, Geoff, 2017. "OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks," SocArXiv q86sd, Center for Open Science.
    3. Boeing, Geoff, 2019. "The Morphology and Circuity of Walkable and Drivable Street Networks," SocArXiv edj2s, Center for Open Science.
    4. Geoff Boeing, 2020. "A multi-scale analysis of 27,000 urban street networks: Every US city, town, urbanized area, and Zillow neighborhood," Environment and Planning B, , vol. 47(4), pages 590-608, May.
    5. Boeing, Geoff, 2017. "The Relative Circuity of Walkable and Drivable Urban Street Networks," SocArXiv 4rzqa, Center for Open Science.
    6. Boeing, Geoff, 2017. "Methods and Measures for Analyzing Complex Street Networks and Urban Form," SocArXiv 93h82, Center for Open Science.
    7. Shiguang Wang & Dexin Yu & Mei-Po Kwan & Huxing Zhou & Yongxing Li & Hongzhi Miao, 2019. "The Evolution and Growth Patterns of the Road Network in a Medium-Sized Developing City: A Historical Investigation of Changchun, China, from 1912 to 2017," Sustainability, MDPI, vol. 11(19), pages 1-25, September.
    8. Boeing, Geoff, 2020. "Street Network Models and Indicators for Every Urban Area in the World," SocArXiv f2dqc, Center for Open Science.
    9. Baorui Han & Dazhi Sun & Xiaomei Yu & Wanlu Song & Lisha Ding, 2020. "Classification of Urban Street Networks Based on Tree-Like Network Features," Sustainability, MDPI, vol. 12(2), pages 1-13, January.
    10. Zhao, Pengxiang & Jia, Tao & Qin, Kun & Shan, Jie & Jiao, Chenjing, 2015. "Statistical analysis on the evolution of OpenStreetMap road networks in Beijing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 59-72.
    11. Boeing, Geoff, 2018. "Urban Spatial Order: Street Network Orientation, Configuration, and Entropy," SocArXiv qj3p5, Center for Open Science.
    12. Perez, Yuri & Pereira, Fabio Henrique, 2021. "Simulation of traffic light disruptions in street networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    13. Yat Yen & Pengjun Zhao & Muhammad T Sohail, 2021. "The morphology and circuity of walkable, bikeable, and drivable street networks in Phnom Penh, Cambodia," Environment and Planning B, , vol. 48(1), pages 169-185, January.
    14. Wang, Shiguang & Yu, Dexin & Kwan, Mei-Po & Zheng, Lili & Miao, Hongzhi & Li, Yongxing, 2020. "The impacts of road network density on motor vehicle travel: An empirical study of Chinese cities based on network theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 144-156.
    15. Marc Barthelemy, 2017. "From paths to blocks: New measures for street patterns," Environment and Planning B, , vol. 44(2), pages 256-271, March.
    16. Sohouenou, Philippe Y.R. & Christidis, Panayotis & Christodoulou, Aris & Neves, Luis A.C. & Presti, Davide Lo, 2020. "Using a random road graph model to understand road networks robustness to link failures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 29(C).
    17. Choi, Dong-ah & Ewing, Reid, 2021. "Effect of street network design on traffic congestion and traffic safety," Journal of Transport Geography, Elsevier, vol. 96(C).
    18. Wang, Shiguang & Yu, Dexin & Lin, Ciyun & Shang, Qiang & Lin, Yu, 2018. "How to connect with each other between roads? An empirical study of urban road connection properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 775-787.
    19. Ding, Rui & Ujang, Norsidah & Hamid, Hussain bin & Manan, Mohd Shahrudin Abd & He, Yuou & Li, Rong & Wu, Jianjun, 2018. "Detecting the urban traffic network structure dynamics through the growth and analysis of multi-layer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 800-817.
    20. Rui Ding & Jian Yin & Peng Dai & Lu Jiao & Rong Li & Tongfei Li & Jianjun Wu, 2019. "Optimal Topology of Multilayer Urban Traffic Networks," Complexity, Hindawi, vol. 2019, pages 1-19, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:socarx:7fxjz. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://arabixiv.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.