[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/nuf/econwp/0414.html
   My bibliography  Save this paper

Robustifying Forecasts from Equilibrium-Correction Models

Author

Listed:
  • David F. Hendry

    (Economcis Department, University of Oxford)

Abstract
In a non-stationary world subject to structural breaks, where model and mechanism differ, equilibrium-correction models are a risky device from which to forecast. Equilibrium shifts entail systematic forecast failure, and indeed forecasts will tend to move in the opposite direction to the data. A new explanation for the empirical success of second differencing is proposed. We consider model transformations based on additional differencing to reduce forecast-error biases, as usual at some cost in increased forecast-error variances. The analysis is illustrated by an empirical application to narrow money holdings in the UK.

Suggested Citation

  • David F. Hendry, 2004. "Robustifying Forecasts from Equilibrium-Correction Models," Economics Papers 2004-W14, Economics Group, Nuffield College, University of Oxford.
  • Handle: RePEc:nuf:econwp:0414
    as

    Download full text from publisher

    File URL: http://www.nuff.ox.ac.uk/economics/papers/2004/w14/DFHEqCMRobust.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paruolo, Paolo, 1996. "On the determination of integration indices in I(2) systems," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 313-356.
    2. Melino, Angelo & Turnbull, Stuart M., 1990. "Pricing foreign currency options with stochastic volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 239-265.
    3. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    4. repec:cup:etheor:v:8:y:1992:i:2:p:188-202 is not listed on IDEAS
    5. Bontemps, Christophe & Mizon, Grayham E., 2001. "Congruence and encompassing," Discussion Paper Series In Economics And Econometrics 0107, Economics Division, School of Social Sciences, University of Southampton.
    6. Hendry, David F. & Ericsson, Neil R., 1991. "Modeling the demand for narrow money in the United Kingdom and the United States," European Economic Review, Elsevier, vol. 35(4), pages 833-881, May.
    7. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    8. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521632423, September.
    9. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    10. Makridakis, Spyros & Hibon, Michele, 2000. "The M3-Competition: results, conclusions and implications," International Journal of Forecasting, Elsevier, vol. 16(4), pages 451-476.
    11. Francis X. Diebold & Jose A. Lopez, 1995. "Forecast evaluation and combination," Research Paper 9525, Federal Reserve Bank of New York.
    12. Rahbek, Anders & Christian Kongsted, Hans & Jorgensen, Clara, 1999. "Trend stationarity in the I(2) cointegration model," Journal of Econometrics, Elsevier, vol. 90(2), pages 265-289, June.
    13. Hendry, David F., 1995. "Dynamic Econometrics," OUP Catalogue, Oxford University Press, number 9780198283164.
    14. Johansen, Søren, 1992. "A Representation of Vector Autoregressive Processes Integrated of Order 2," Econometric Theory, Cambridge University Press, vol. 8(2), pages 188-202, June.
    15. Michael P. Clements & David F. Hendry, 2001. "Forecasting Non-Stationary Economic Time Series," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262531895, April.
    16. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. M. Kargbo, 2007. "Forecasting agricultural exports and imports in South Africa," Applied Economics, Taylor & Francis Journals, vol. 39(16), pages 2069-2084.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David F. Hendry, 2004. "Unpredictability and the Foundations of Economic Forecasting," Econometric Society 2004 Australasian Meetings 27, Econometric Society.
    2. Michael P. Clements & David F. Hendry, 2005. "Guest Editors’ Introduction: Information in Economic Forecasting," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 713-753, December.
    3. Hendry, David F., 2006. "Robustifying forecasts from equilibrium-correction systems," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 399-426.
    4. David Hendry & Grayham E. Mizon, 2001. "Forecasting in the Presence of Structural Breaks and Policy Regime Shifts," Economics Papers 2002-W12, Economics Group, Nuffield College, University of Oxford.
    5. David Hendry & Michael P. Clements, 2010. "Forecasting from Mis-specified Models in the Presence of Unanticipated Location Shifts," Economics Series Working Papers 484, University of Oxford, Department of Economics.
    6. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    7. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    8. Paruolo, Paolo & Rahbek, Anders, 1999. "Weak exogeneity in I(2) VAR systems," Journal of Econometrics, Elsevier, vol. 93(2), pages 281-308, December.
    9. Kirstin Hubrich & David F. Hendry, 2005. "Forecasting Aggregates by Disaggregates," Computing in Economics and Finance 2005 270, Society for Computational Economics.
    10. Ericsson, Neil R & Hendry, David F & Mizon, Grayham E, 1998. "Exogeneity, Cointegration, and Economic Policy Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(4), pages 370-387, October.
    11. David F. Hendry & Grayham E. Mizon, 2016. "Improving the teaching of econometrics," Cogent Economics & Finance, Taylor & Francis Journals, vol. 4(1), pages 1170096-117, December.
    12. Hendry, David F. & Mizon, Grayham E., 2014. "Unpredictability in economic analysis, econometric modeling and forecasting," Journal of Econometrics, Elsevier, vol. 182(1), pages 186-195.
    13. Hendry, David F. & Hubrich, Kirstin, 2006. "Forecasting economic aggregates by disaggregates," Working Paper Series 589, European Central Bank.
    14. Kurita, Takamitsu, 2020. "Likelihood-based tests for parameter constancy in I(2) CVAR models with an application to fixed-term deposit data," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    15. Jennifer L. Castle & Michael P. Clements & David F. Hendry, 2016. "An Overview of Forecasting Facing Breaks," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(1), pages 3-23, September.
    16. Jennifer Castle & David Hendry, 2007. "Forecasting UK Inflation: the Roles of Structural Breaks and Time Disaggregation," Economics Series Working Papers 309, University of Oxford, Department of Economics.
    17. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196, Elsevier.
    18. Hubrich, Kirstin, 2005. "Forecasting euro area inflation: Does aggregating forecasts by HICP component improve forecast accuracy?," International Journal of Forecasting, Elsevier, vol. 21(1), pages 119-136.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nuf:econwp:0414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Maxine Collett (email available below). General contact details of provider: https://www.nuffield.ox.ac.uk/economics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.