[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/21676.html
   My bibliography  Save this paper

Using Linked Survey and Administrative Data to Better Measure Income: Implications for Poverty, Program Effectiveness and Holes in the Safety Net

Author

Listed:
  • Bruce D. Meyer
  • Nikolas Mittag
Abstract
We examine the consequences of underreporting of transfer programs for prototypical analyses of low-income populations using the Current Population Survey (CPS), the source of official poverty and inequality statistics. We link administrative data for food stamps, TANF, General Assistance, and subsidized housing from New York State to the CPS at the individual level. Program receipt in the CPS is missed for over one-third of housing assistance recipients, 40 percent of food stamp recipients and 60 percent of TANF and General Assistance recipients. Dollars of benefits are also undercounted for reporting recipients, particularly for TANF, General Assistance and housing assistance. We find that the survey data sharply understate the income of poor households. Underreporting in the survey data also greatly understates the effects of anti-poverty programs and changes our understanding of program targeting. Using the combined data rather than survey data alone, the poverty reducing effect of all programs together is nearly doubled while the effect of housing assistance is tripled. We also re-examine the coverage of the safety net, specifically the share of people without work or program receipt. Using the administrative measures of program receipt rather than the survey ones often reduces the share of single mothers falling through the safety net by one-half or more.

Suggested Citation

  • Bruce D. Meyer & Nikolas Mittag, 2015. "Using Linked Survey and Administrative Data to Better Measure Income: Implications for Poverty, Program Effectiveness and Holes in the Safety Net," NBER Working Papers 21676, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:21676
    Note: AG CH LS PE
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w21676.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Robert Moffitt & John Karl Scholz, 2010. "Trends in the Level and Distribution of Income Support," NBER Chapters, in: Tax Policy and the Economy, Volume 24, pages 111-152, National Bureau of Economic Research, Inc.
    2. Bound, John & Krueger, Alan B, 1991. "The Extent of Measurement Error in Longitudinal Earnings Data: Do Two Wrongs Make a Right?," Journal of Labor Economics, University of Chicago Press, vol. 9(1), pages 1-24, January.
    3. Marianne P. Bitler & Hilary W. Hoynes, 2010. "The State of Social Safety Net in the Post-Welfare Reform Era," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 41(2 (Fall)), pages 71-147.
    4. Hilary W. Hoynes & Marianne E. Page & Ann Huff Stevens, 2006. "Poverty in America: Trends and Explanations," Journal of Economic Perspectives, American Economic Association, vol. 20(1), pages 47-68, Winter.
    5. Christopher R. Bollinger & Barry T. Hirsch, 2006. "Match Bias from Earnings Imputation in the Current Population Survey: The Case of Imperfect Matching," Journal of Labor Economics, University of Chicago Press, vol. 24(3), pages 483-520, July.
    6. Peter Gottschalk & Sheldon Danziger, 2005. "Inequality Of Wage Rates, Earnings And Family Income In The United States, 1975–2002," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 51(2), pages 231-254, June.
    7. Marianne Bitler & Hilary Hoynes, 2016. "The More Things Change, the More They Stay the Same? The Safety Net and Poverty in the Great Recession," Journal of Labor Economics, University of Chicago Press, vol. 34(S1), pages 403-444.
    8. Lesley J. Turner & Sheldon Danziger & Kristin S. Seefeldt, 2006. "Failing the Transition from Welfare to Work: Women Chronically Disconnected from Employment and Cash Welfare," Social Science Quarterly, Southwestern Social Science Association, vol. 87(2), pages 227-249, June.
    9. Nikolas Mittag, 2013. "A Method Of Correcting For Misreporting Applied To The Food Stamp Program," Working Papers 13-28, Center for Economic Studies, U.S. Census Bureau.
    10. Wooldridge, Jeffrey M., 2007. "Inverse probability weighted estimation for general missing data problems," Journal of Econometrics, Elsevier, vol. 141(2), pages 1281-1301, December.
    11. Yonatan Ben-Shalom & Robert A. Moffitt & John Karl Scholz, "undated". "An Assessment of the Effectiveness of Anti-Poverty Programs in the United States," Mathematica Policy Research Reports cfc848ed6ab647bcb38ab47bb, Mathematica Policy Research.
    12. Bruce Meyer & Nikolas Mittag, 2013. "Misclassification In Binary Choice Models," Working Papers 13-27, Center for Economic Studies, U.S. Census Bureau.
    13. Arie Kapteyn & Jelmer Y. Ypma, 2007. "Measurement Error and Misclassification: A Comparison of Survey and Administrative Data," Journal of Labor Economics, University of Chicago Press, vol. 25(3), pages 513-551.
    14. Ravallion, Martin, 1996. "Issues in Measuring and Modelling Poverty," Economic Journal, Royal Economic Society, vol. 106(438), pages 1328-1343, September.
    15. Black, Dan & Sanders, Seth & Taylor, Lowell, 2003. "Measurement of Higher Education in the Census and Current Population Survey," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 545-554, January.
    16. Mark D. Partridge & Dan S. Rickman, 2006. "The Geography of American Poverty: Is There a Need for Place-Based Policies?," Books from Upjohn Press, W.E. Upjohn Institute for Employment Research, number gap.
    17. Bruce D. Meyer & Wallace K. C. Mok & James X. Sullivan, 2015. "Household Surveys in Crisis," Journal of Economic Perspectives, American Economic Association, vol. 29(4), pages 199-226, Fall.
    18. John M. Abowd & Martha H. Stinson, 2013. "Estimating Measurement Error in Annual Job Earnings: A Comparison of Survey and Administrative Data," The Review of Economics and Statistics, MIT Press, vol. 95(5), pages 1451-1467, December.
    19. Bound, John & Brown, Charles & Mathiowetz, Nancy, 2001. "Measurement error in survey data," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 59, pages 3705-3843, Elsevier.
    20. repec:taf:jnlbes:v:30:y:2012:i:2:p:191-201 is not listed on IDEAS
    21. Philip Armour & Richard V. Burkhauser & Jeff Larrimore, 2013. "Deconstructing Income and Income Inequality Measures: A Crosswalk from Market Income to Comprehensive Income," American Economic Review, American Economic Association, vol. 103(3), pages 173-177, May.
    22. repec:mpr:mprres:6980 is not listed on IDEAS
    23. Bollinger, Christopher R, 1998. "Measurement Error in the Current Population Survey: A Nonparametric Look," Journal of Labor Economics, University of Chicago Press, vol. 16(3), pages 576-594, July.
    24. Poterba, James M & Summers, Lawrence H, 1986. "Reporting Errors and Labor Market Dynamics," Econometrica, Econometric Society, vol. 54(6), pages 1319-1338, November.
    25. Erik Meijer & Susann Rohwedder & Tom Wansbeek, 2011. "Measurement Error in Earnings Data: Using a Mixture Model Approach to Combine Survey and Register Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 191-201, February.
    26. Scherpf, Erik & Newman, Constance & Prell, Mark, 2014. "Targeting of Supplemental Nutrition Assistance Program Benefits: Evidence from the ACS and NY SNAP Administrative Records," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 174295, Agricultural and Applied Economics Association.
    27. Molly Dahl & Thomas DeLeire & Jonathan A. Schwabish, 2011. "Estimates of Year-to-Year Volatility in Earnings and in Household Incomes from Administrative, Survey, and Matched Data," Journal of Human Resources, University of Wisconsin Press, vol. 46(4), pages 750-774.
    28. Bruce D. Meyer & James X. Sullivan, 2012. "Identifying the Disadvantaged: Official Poverty, Consumption Poverty, and the New Supplemental Poverty Measure," Journal of Economic Perspectives, American Economic Association, vol. 26(3), pages 111-136, Summer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meyer, Bruce D. & Mittag, Nikolas, 2017. "Using Linked Survey and Administrative Data to Better Measure Income: Implications for Poverty, Program Effectiveness and Holes in the Safety Net," IZA Discussion Papers 10943, Institute of Labor Economics (IZA).
    2. Bruce Meyer & Nikolas Mittag, 2017. "Using Linked Survey and Administrative Data to Better Measure Income: Implications for Poverty, Program Effectiveness and Holes in the Safety Net," Working Papers 2017-075, Human Capital and Economic Opportunity Working Group.
    3. Mittag, Nikolas, 2016. "Correcting for Misreporting of Government Benefits," IZA Discussion Papers 10266, Institute of Labor Economics (IZA).
    4. Bradley Hardy & Timothy Smeeding & James P. Ziliak, 2018. "The Changing Safety Net for Low-Income Parents and Their Children: Structural or Cyclical Changes in Income Support Policy?," Demography, Springer;Population Association of America (PAA), vol. 55(1), pages 189-221, February.
    5. Meyer, Bruce D. & Mittag, Nikolas, 2019. "Combining Administrative and Survey Data to Improve Income Measurement," IZA Discussion Papers 12266, Institute of Labor Economics (IZA).
    6. Bruce D. Meyer & Derek Wu, 2018. "The Poverty Reduction of Social Security and Means-Tested Transfers," NBER Working Papers 24567, National Bureau of Economic Research, Inc.
    7. Bruce D. Meyer & Nikolas Mittag, 2019. "Combining Administrative and Survey Data to Improve Income Measurement," NBER Working Papers 25738, National Bureau of Economic Research, Inc.
    8. Bollinger, Christopher R. & Hirsch, Barry & Hokayem, Charles M. & Ziliak, James P., 2018. "Trouble in the Tails? What We Know about Earnings Nonresponse Thirty Years after Lillard, Smith, and Welch," IZA Discussion Papers 11710, Institute of Labor Economics (IZA).
    9. Michele Lalla & Patrizio Frederic & Daniela Mantovani, 2022. "The inextricable association of measurement errors and tax evasion as examined through a microanalysis of survey data matched with fiscal data: a case study," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(5), pages 1375-1401, December.
    10. Michele Lalla & Maddalena Cavicchioli, 2020. "Nonresponse and measurement errors in income: matching individual survey data with administrative tax data," Department of Economics 0170, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    11. Hyslop, Dean R. & Townsend, Wilbur, 2017. "Employment misclassification in survey and administrative reports," Economics Letters, Elsevier, vol. 155(C), pages 19-23.
    12. Nayoung Lee, 2022. "Measurement error and its impact on estimates of income dynamics," Empirical Economics, Springer, vol. 63(5), pages 2539-2550, November.
    13. James P. Ziliak & Charles Hokayem & Christopher R. Bollinger, 2022. "Trends in Earnings Volatility Using Linked Administrative and Survey Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(1), pages 12-19, December.
    14. Paulus, Alari, 2015. "Tax evasion and measurement error: An econometric analysis of survey data linked with tax records," ISER Working Paper Series 2015-10, Institute for Social and Economic Research.
    15. Adam Bee & Joshua Mitchell & Nikolas Mittag & Jonathan Rothbaum & Carl Sanders & Lawrence Schmidt & Matthew Unrath, 2023. "National Experimental Wellbeing Statistics - Version 1," Working Papers 23-04, Center for Economic Studies, U.S. Census Bureau.
    16. Christian Imboden & John Voorheis & Caroline Weber, 2023. "Self-Employment Income Reporting on Surveys," Working Papers 23-19, Center for Economic Studies, U.S. Census Bureau.
    17. Quinn Moore & Irma Perez-Johnson & Robert Santillano, 2018. "Decomposing Differences in Impacts on Survey- and Administrative-Measured Earnings From a Job Training Voucher Experiment," Evaluation Review, , vol. 42(5-6), pages 515-549, October.
    18. Bruce D. Meyer & Derek Wu & Victoria R. Mooers & Carla Medalia, 2019. "The Use and Misuse of Income Data and Extreme Poverty in the United States," NBER Working Papers 25907, National Bureau of Economic Research, Inc.
    19. Stüber, Heiko & Grabka, Markus M. & Schnitzlein, Daniel D., 2023. "A tale of two data sets: comparing German administrative and survey data using wage inequality as an example," Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 57, pages 1-8.
    20. Jenkins, Stephen P. & Rios-Avila, Fernando, 2021. "Reconciling Reports: Modelling Employment Earnings and Measurement Errors Using Linked Survey and Administrative Data," IZA Discussion Papers 14405, Institute of Labor Economics (IZA).

    More about this item

    JEL classification:

    • C42 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Survey Methods
    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
    • I32 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty - - - Measurement and Analysis of Poverty
    • I38 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty - - - Government Programs; Provision and Effects of Welfare Programs

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:21676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.