[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/13573.html
   My bibliography  Save this paper

Water Demand Under Alternative Price Structures

Author

Listed:
  • Sheila Olmstead
  • W. Michael Hanemann
  • Robert N. Stavins
Abstract
We estimate the price elasticity of water demand with household-level data, structurally modeling the piecewise-linear budget constraints imposed by increasing-block pricing. We develop a mathematical expression for the unconditional price elasticity of demand under increasing-block prices and compare conditional and unconditional elasticities analytically and empirically. We test the hypothesis that price elasticity may depend on price structure, beyond technical differences in elasticity concepts. Due to the possibility of endogenous utility price structure choice, observed differences in elasticity across price structures may be due either to a behavioral response to price structure, or to underlying heterogeneity among water utility service areas.

Suggested Citation

  • Sheila Olmstead & W. Michael Hanemann & Robert N. Stavins, 2007. "Water Demand Under Alternative Price Structures," NBER Working Papers 13573, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:13573
    Note: EEE PE
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w13573.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jasper M. Dalhuisen & Raymond J. G. M. Florax & JHenri L. F. de Groot & Peter Nijkamp, 2003. "Price and Income Elasticities of Residential Water Demand: A Meta-Analysis," Land Economics, University of Wisconsin Press, vol. 79(2), pages 292-308.
    2. Christopher Timmins, 2003. "Demand-Side Technology Standards Under Inefficient Pricing Regimes," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 26(1), pages 107-124, September.
    3. S. Gaudin, 2006. "Effect of price information on residential water demand," Applied Economics, Taylor & Francis Journals, vol. 38(4), pages 383-393.
    4. Frederick, Kenneth D. & Schwarz, Gregory E., 2000. "Socioeconomic Impacts of Climate Variability and Change on U.S. Water Resources," Discussion Papers 10786, Resources for the Future.
    5. Frederick, Kenneth & Schwarz, Gregory, 2000. "Socioeconomic Impacts of Climate Variability and Change on U.S. Water Resources," RFF Working Paper Series dp-00-21, Resources for the Future.
    6. Jerry A. Hausman, 1983. "Stochastic Problems in the Simulation of Labor Supply," NBER Chapters, in: Behavioral Simulation Methods in Tax Policy Analysis, pages 47-82, National Bureau of Economic Research, Inc.
    7. Julie A. Hewitt & W. Michael Hanemann, 1995. "A Discrete/Continuous Choice Approach to Residential Water Demand under Block Rate Pricing," Land Economics, University of Wisconsin Press, vol. 71(2), pages 173-192.
    8. MICHAEL Nieswiadomy & STEVEN L. Cobb, 1993. "Impact Of Pricing Structure Selectivity On Urban Water Demand," Contemporary Economic Policy, Western Economic Association International, vol. 11(3), pages 101-113, July.
    9. Hausman, Jerry A., 1985. "Taxes and labor supply," Handbook of Public Economics, in: A. J. Auerbach & M. Feldstein (ed.), Handbook of Public Economics, edition 1, volume 1, chapter 4, pages 213-263, Elsevier.
    10. Hausmann, J. A. & Kinnucan, M. & McFaddden, D., 1979. "A two-level electricity demand model : Evaluation of the connecticut time-of-day pricing test," Journal of Econometrics, Elsevier, vol. 10(3), pages 263-289, August.
    11. Hanemann, W Michael, 1984. "Discrete-Continuous Models of Consumer Demand," Econometrica, Econometric Society, vol. 52(3), pages 541-561, May.
    12. R. Bruce Billings & Donald E. Agthe, 1980. "Price Elasticities for Water: A Case of Increasing Block Rates," Land Economics, University of Wisconsin Press, vol. 56(1), pages 73-84.
    13. Moffitt, Robert, 1986. "The Econometrics of Piecewise-Linear Budget Constraints: A Survey and Exposition of the Maximum Likelihood Method," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(3), pages 317-328, July.
    14. Mansur, Erin T. & Olmstead, Sheila M., 2012. "The value of scarce water: Measuring the inefficiency of municipal regulations," Journal of Urban Economics, Elsevier, vol. 71(3), pages 332-346.
    15. James E. T. Moncur & Richard L. Pollock, 1988. "Scarcity Rents for Water: A Valuation and Pricing Model," Land Economics, University of Wisconsin Press, vol. 64(1), pages 62-72.
    16. Michael L. Nieswiadomy & David J. Molina, 1989. "Comparing Residential Water Demand Estimates under Decreasing and Increasing Block Rates Using Household Data," Land Economics, University of Wisconsin Press, vol. 65(3), pages 280-289.
    17. Piet Rietveld & Jan Rouwendal & Bert Zwart, 2000. "Block Rate Pricing of Water in Indonesia: An Analysis of Welfare Effects," Bulletin of Indonesian Economic Studies, Taylor & Francis Journals, vol. 36(3), pages 73-92.
    18. Burtless, Gary & Hausman, Jerry A, 1978. "The Effect of Taxation on Labor Supply: Evaluating the Gary Negative Income Tax Experiments," Journal of Political Economy, University of Chicago Press, vol. 86(6), pages 1103-1130, December.
    19. Moffitt, Robert, 1990. "The Econometrics of Kinked Budget Constraints," Journal of Economic Perspectives, American Economic Association, vol. 4(2), pages 119-139, Spring.
    20. Ellen M. Pint, 1999. "Household Responses to Increased Water Rates during the California Drought," Land Economics, University of Wisconsin Press, vol. 75(2), pages 246-266.
    21. John A. Nordin, 1976. "A Proposed Modification of Taylor's Demand Analysis: Comment," Bell Journal of Economics, The RAND Corporation, vol. 7(2), pages 719-721, Autumn.
    22. Lester D. Taylor, 1975. "The Demand for Electricity: A Survey," Bell Journal of Economics, The RAND Corporation, vol. 6(1), pages 74-110, Spring.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stavins, Robert & Hanemann, W. Michael & Olmstead, Sheila, 2005. "Do Consumers React to the Shape of Supply? Water Demand under Heterogeneous Price Structures," RFF Working Paper Series dp-05-29, Resources for the Future.
    2. Andrew C. Worthington & Mark Hoffman, 2008. "An Empirical Survey Of Residential Water Demand Modelling," Journal of Economic Surveys, Wiley Blackwell, vol. 22(5), pages 842-871, December.
    3. Darío F. Jiménez & Sergio A. Orrego & Felipe A. Vásquez & Roberto D. Ponce, 2017. "Estimating water demand for urban residential use using a discrete-continuous model and disaggregated data at the household level: the case of the city of Manizales, Colombia," Lecturas de Economía, Universidad de Antioquia, Departamento de Economía, issue 86, pages 153-178, Enero - J.
    4. Mansur, Erin T. & Olmstead, Sheila M., 2012. "The value of scarce water: Measuring the inefficiency of municipal regulations," Journal of Urban Economics, Elsevier, vol. 71(3), pages 332-346.
    5. Jiménez, Darío F. & Orrego, Sergio A. & Vásquez, Felipe A. & Ponce, Roberto D., 2016. "Estimación de la demanda de agua para uso residencial urbano usando un modelo discreto-continuo y datos desagregados a nivel de hogar: el caso de la ciudad de Manizales, Colombia," Revista Lecturas de Economía, Universidad de Antioquia, CIE, issue 86, pages 153-178, December.
    6. Worthington, Andrew C., 2010. "Commercial and Industrial Water Demand Estimation: Theoretical and Methodological Guidelines for Applied Economics Research/Estimación de la demanda de agua comercial e industrial: pautas teóricas y m," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 28, pages 237-258, Agosto.
    7. Mónica Maldonado-Devis & Vicent Almenar-Llongo, 2021. "A Panel Data Estimation of Domestic Water Demand with IRT Tariff Structure: The Case of the City of Valencia (Spain)," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    8. Dinusha Dharmaratna & Edwyna Harris, 2012. "Estimating Residential Water Demand Using the Stone-Geary Functional Form: The Case of Sri Lanka," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2283-2299, June.
    9. Arbues, Fernando & Garcia-Valinas, Maria Angeles & Martinez-Espineira, Roberto, 2003. "Estimation of residential water demand: a state-of-the-art review," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 32(1), pages 81-102, March.
    10. Henrique Monteiro, 2010. "Residential Water Demand in Portugal: checking for efficiency-based justifications for increasing block tariffs," Working Papers Series 1 ercwp0110, ISCTE-IUL, Business Research Unit (BRU-IUL).
    11. Sheila M. Olmstead, 2010. "The Economics of Managing Scarce Water Resources," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 4(2), pages 179-198, Summer.
    12. Dinusha Dharmaratna & Edwyna Harris, 2010. "Estimating Residential Water Demand using the Stone-Geary Functional Form: the Case of Sri Lanka," Monash Economics Working Papers 46-10, Monash University, Department of Economics.
    13. María Ángeles García-Valiñas & Sara Suárez-Fernández, 2022. "Are Economic Tools Useful to Manage Residential Water Demand? A Review of Old Issues and Emerging Topics," Post-Print hal-04067487, HAL.
    14. Ruijs, A. & Zimmermann, A. & van den Berg, M., 2008. "Demand and distributional effects of water pricing policies," Ecological Economics, Elsevier, vol. 66(2-3), pages 506-516, June.
    15. Arjan Ruijs, 2007. "Welfare and Distribution Effects of Water Pricing Policies," Working Papers 2007.92, Fondazione Eni Enrico Mattei.
    16. Aaron Strong & V. Kerry Smith, 2010. "Reconsidering the Economics of Demand Analysis with Kinked Budget Constraints," Land Economics, University of Wisconsin Press, vol. 86(1), pages 173-190.
    17. Corral, Leonardo & Fisher, Anthony C. & Hatch, Nile W., 1999. "Price and Non-Price Influences on Water Conservation: An Econometric Model of Aggregate Demand under Nonlinear Budget Constraint," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt3gx868tg, Department of Agricultural & Resource Economics, UC Berkeley.
    18. R. Quentin Grafton & Tom Kompas & Hang To & Michael Ward, 2009. "Residential Water Consumption: A Cross Country Analysis," Environmental Economics Research Hub Research Reports 0923, Environmental Economics Research Hub, Crawford School of Public Policy, The Australian National University, revised Aug 2009.
    19. Diakité, Daouda & Thomas, Alban, 2011. "La demande domestique d’eau potable : une étude sur un panel de communes ivoiriennes," L'Actualité Economique, Société Canadienne de Science Economique, vol. 87(3), pages 269-299, septembre.
    20. Kenneth A. Baerenklau & María Pérez-Urdiales, 2019. "Can Allocation-Based Water Rates Promote Conservation and Increase Welfare? A California Case Study," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 1-26, April.

    More about this item

    JEL classification:

    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • L95 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Gas Utilities; Pipelines; Water Utilities
    • Q21 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Demand and Supply; Prices
    • Q25 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Water
    • Q28 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:13573. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.