[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/10975.html
   My bibliography  Save this paper

Semiparametric Causality Tests Using the Policy Propensity Score

Author

Listed:
  • Joshua D. Angrist
  • Guido M. Kuersteiner
Abstract
Time series data are widely used to explore causal relationships, typically in a regression framework with lagged dependent variables. Regression-based causality tests rely on an array of functional form and distributional assumptions for valid causal inference. This paper develops a semi-parametric test for causality in models linking a binary treatment or policy variable with unobserved potential outcomes. The procedure is semiparametric in the sense that we model the process determining treatment -- the policy propensity score -- but leave the model for outcomes unspecified. This general approach is motivated by the notion that we typically have better prior information about the policy determination process than about the macro-economy. A conceptual innovation is that we adapt the cross-sectional potential outcomes framework to a time series setting. This leads to a generalized definition of Sims (1980) causality. We also develop a test for full conditional independence, in contrast with the usual focus on mean independence. Our approach is illustrated using data from the Romer and Romer (1989) study of the relationship between the Federal reserve's monetary policy and output.

Suggested Citation

  • Joshua D. Angrist & Guido M. Kuersteiner, 2004. "Semiparametric Causality Tests Using the Policy Propensity Score," NBER Working Papers 10975, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:10975
    Note: ME
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w10975.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Romer, Christina D. & Romer, David H., 1997. "Identification and the narrative approach: A reply to Leeper," Journal of Monetary Economics, Elsevier, vol. 40(3), pages 659-665, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joshua D. Angrist & Jörn-Steffen Pischke, 2010. "The Credibility Revolution in Empirical Economics: How Better Research Design Is Taking the Con out of Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 24(2), pages 3-30, Spring.
    2. Nir Billfeld & Moshe Kim, 2019. "Semiparametric Wavelet-based JPEG IV Estimator for endogenously truncated data," Papers 1908.02166, arXiv.org.
    3. Joeri Smits & Jeffrey S. Racine, 2013. "Testing Exclusion Restrictions in Nonseparable Triangular Models," Department of Economics Working Papers 2013-02, McMaster University.
    4. Sokbae (Simon) Lee & Yoon-Jae Whang, 2009. "Nonparametric tests of conditional treatment effects," CeMMAP working papers CWP36/09, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Joshua D. Angrist & Òscar Jordà & Guido M. Kuersteiner, 2018. "Semiparametric Estimates of Monetary Policy Effects: String Theory Revisited," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(3), pages 371-387, July.
    6. Òscar Jordà & Alan M. Taylor, 2016. "The Time for Austerity: Estimating the Average Treatment Effect of Fiscal Policy," Economic Journal, Royal Economic Society, vol. 126(590), pages 219-255, February.
    7. Mauricio Villamizar-Villegas, 2016. "Identifying The Effects Of Simultaneous Monetary Policy Shocks," Contemporary Economic Policy, Western Economic Association International, vol. 34(2), pages 268-296, April.
    8. Kyungchul Song, 2007. "Testing Conditional Independence via Rosenblatt Transforms," PIER Working Paper Archive 07-026, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    9. Song, Kyungchul, 2010. "Testing semiparametric conditional moment restrictions using conditional martingale transforms," Journal of Econometrics, Elsevier, vol. 154(1), pages 74-84, January.
    10. Michael Lechner, 2006. "The Relation of Different Concepts of Causality in Econometrics," University of St. Gallen Department of Economics working paper series 2006 2006-15, Department of Economics, University of St. Gallen.
    11. White, Halbert, 2006. "Time-series estimation of the effects of natural experiments," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 527-566.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hebous, Shafik & Zimmermann, Tom, 2014. "Revisiting the Narrative Approach of Estimating Fiscal Multipliers," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100408, Verein für Socialpolitik / German Economic Association.
    2. Shafik Hebous & Tom Zimmermann, 2018. "Revisiting the Narrative Approach of Estimating Tax Multipliers," Scandinavian Journal of Economics, Wiley Blackwell, vol. 120(2), pages 428-439, April.
    3. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    4. Hassan, Rubina & Shahzad, Mirza Muhammad, 2011. "A macroeconometric framework for monetary policy evaluation: A case study of Pakistan," Economic Modelling, Elsevier, vol. 28(1-2), pages 118-137, January.
    5. Òscar Jordà & Alan M. Taylor, 2016. "The Time for Austerity: Estimating the Average Treatment Effect of Fiscal Policy," Economic Journal, Royal Economic Society, vol. 126(590), pages 219-255, February.
    6. Per Jansson & Anders Vredin, 2003. "Forecast‐Based Monetary Policy: The Case of Sweden," International Finance, Wiley Blackwell, vol. 6(3), pages 349-380, November.
    7. Tim Willems, 2020. "What Do Monetary Contractions Do? Evidence From Large Tightenings," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 38, pages 41-58, October.
    8. Jansson, Per & Vredin, Anders, 2001. "Forecast-based Monetary Policy in Sweden 1992-1998: A View from Within," Working Paper Series 120, Sveriges Riksbank (Central Bank of Sweden).
    9. Sun, Rongrong, 2013. "Does monetary policy matter in China? A narrative approach," China Economic Review, Elsevier, vol. 26(C), pages 56-74.
    10. Tim Willems, 2018. "What Do Monetary Contractions Do? Evidence From Large, Unanticipated Tightenings," IMF Working Papers 2018/211, International Monetary Fund.
    11. Abbigail J. Chiodo & Michael T. Owyang, 2002. "Duration dependence in monetary policy: international evidence," Working Papers 2002-021, Federal Reserve Bank of St. Louis.
    12. repec:bla:intfin:v:6:y:2003:i:3:p:349-80 is not listed on IDEAS

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:10975. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.