[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/mse/cesdoc/16003.html
   My bibliography  Save this paper

A note on the Sobol' indices and interactive criteria

Author

Listed:
Abstract
The Choquet integral and the Owen extension (or multilinear extension) are the most popular tools in multicriteria decision making to take into account the interaction between criteria. It is known that the interaction transform and the Banzhaf interaction transform arise as the average total variation of the Choquet integral and multilinear extension respectively. We consider in this note another approach to define interaction, by using the Sobol' indices which are related to the analysis of variance of a multivariate model. We prove that the Sobol' indices of the multilinear extension gives the square of the Fourier transform, a well-known concept in computer sciences. We also relate the latter to the Banzhaf interaction transform and compute the Sobol' indices for the 2-additive Choquet integral

Suggested Citation

  • Michel Grabisch & Christophe Labreuche, 2016. "A note on the Sobol' indices and interactive criteria," Documents de travail du Centre d'Economie de la Sorbonne 16003, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
  • Handle: RePEc:mse:cesdoc:16003
    as

    Download full text from publisher

    File URL: ftp://mse.univ-paris1.fr/pub/mse/CES2016/16003.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Michel Grabisch & Jean-Luc Marichal & Marc Roubens, 2000. "Equivalent Representations of Set Functions," Mathematics of Operations Research, INFORMS, vol. 25(2), pages 157-178, May.
    2. Michel Grabisch & Christophe Labreuche, 2010. "A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid," Annals of Operations Research, Springer, vol. 175(1), pages 247-286, March.
    3. Guillermo Owen, 1972. "Multilinear Extensions of Games," Management Science, INFORMS, vol. 18(5-Part-2), pages 64-79, January.
    4. Michel Grabisch & Jacques Duchene & Frédéric Lino & Patrice Perny, 2002. "Subjective Evaluation of Discomfort in Sitting Positions," Post-Print halshs-00273179, HAL.
    5. Berrah, L. & Mauris, G. & Montmain, J., 2008. "Monitoring the improvement of an overall industrial performance based on a Choquet integral aggregation," Omega, Elsevier, vol. 36(3), pages 340-351, June.
    6. Angilella, Silvia & Greco, Salvatore & Lamantia, Fabio & Matarazzo, Benedetto, 2004. "Assessing non-additive utility for multicriteria decision aid," European Journal of Operational Research, Elsevier, vol. 158(3), pages 734-744, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michel Grabisch & Christophe Labreuche, 2010. "A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid," Annals of Operations Research, Springer, vol. 175(1), pages 247-286, March.
    2. Bottero, M. & Ferretti, V. & Figueira, J.R. & Greco, S. & Roy, B., 2018. "On the Choquet multiple criteria preference aggregation model: Theoretical and practical insights from a real-world application," European Journal of Operational Research, Elsevier, vol. 271(1), pages 120-140.
    3. GRABISCH, Michel & LABREUCHE, Christophe & RIDAOUI, Mustapha, 2019. "On importance indices in multicriteria decision making," European Journal of Operational Research, Elsevier, vol. 277(1), pages 269-283.
    4. Ferreira, João J.M. & Jalali, Marjan S. & Ferreira, Fernando A.F., 2018. "Enhancing the decision-making virtuous cycle of ethical banking practices using the Choquet integral," Journal of Business Research, Elsevier, vol. 88(C), pages 492-497.
    5. Brice Mayag & Michel Grabisch & Christophe Labreuche, 2009. "A characterization of the 2-additive Choquet integral through cardinal information," Post-Print halshs-00445132, HAL.
    6. Ulrich Faigle & Michel Grabisch, 2016. "Bases and linear transforms of TU-games and cooperation systems," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(4), pages 875-892, November.
    7. Grabisch, Michel & Labreuche, Christophe, 2018. "Monotone decomposition of 2-additive Generalized Additive Independence models," Mathematical Social Sciences, Elsevier, vol. 92(C), pages 64-73.
    8. Bonifacio Llamazares, 2019. "An Analysis of Winsorized Weighted Means," Group Decision and Negotiation, Springer, vol. 28(5), pages 907-933, October.
    9. Kojadinovic, Ivan, 2004. "Estimation of the weights of interacting criteria from the set of profiles by means of information-theoretic functionals," European Journal of Operational Research, Elsevier, vol. 155(3), pages 741-751, June.
    10. Anath Rau Krishnan & Siti Nur Aqilah & Maznah Mat Kasim & Engku Muhammad Nazri & Abdul Kamal Char, 2017. "A revised procedure to identify λ 0-measure values for applying Choquet integral in solving multi-attribute decision problems," OPSEARCH, Springer;Operational Research Society of India, vol. 54(3), pages 637-650, September.
    11. Christophe Labreuche, 2018. "An axiomatization of the Choquet integral in the context of multiple criteria decision making without any commensurability assumption," Annals of Operations Research, Springer, vol. 271(2), pages 701-735, December.
    12. Corrente, Salvatore & Greco, Salvatore & Ishizaka, Alessio, 2016. "Combining analytical hierarchy process and Choquet integral within non-additive robust ordinal regression," Omega, Elsevier, vol. 61(C), pages 2-18.
    13. Pelegrina, Guilherme Dean & Duarte, Leonardo Tomazeli & Grabisch, Michel & Romano, João Marcos Travassos, 2020. "The multilinear model in multicriteria decision making: The case of 2-additive capacities and contributions to parameter identification," European Journal of Operational Research, Elsevier, vol. 282(3), pages 945-956.
    14. Mikhail Timonin, 2016. "Choquet integral in decision analysis - lessons from the axiomatization," Papers 1611.09926, arXiv.org.
    15. Volker Kuppelwieser & Fouad Ben Abdelaziz & Olfa Meddeb, 2020. "Unstable interactions in customers’ decision making: an experimental proof," Annals of Operations Research, Springer, vol. 294(1), pages 479-499, November.
    16. Alessio Bonetti & Silvia Bortot & Mario Fedrizzi & Silvio Giove & Ricardo Alberto Marques Pereira & Andrea Molinari, 2011. "Modelling group processes and effort estimation in Project Management using the Choquet integral: an MCDM approach," DISA Working Papers 2011/12, Department of Computer and Management Sciences, University of Trento, Italy, revised Sep 2011.
    17. Mayag, Brice & Bouyssou, Denis, 2020. "Necessary and possible interaction between criteria in a 2-additive Choquet integral model," European Journal of Operational Research, Elsevier, vol. 283(1), pages 308-320.
    18. Sébastien Courtin & Rodrigue Tido Takeng & Frédéric Chantreuil, 2020. "Decomposition of interaction indices: alternative interpretations of cardinal-probabilistic interaction indices ," Working Papers hal-02952516, HAL.
    19. Kun Zhou & Zaiwu Gong & Xiaoqing Chen & Roman Słowiński, 2024. "Determination of a Representative Collective Value Function Through a Value Function-Based Consensus-Reaching Process," Group Decision and Negotiation, Springer, vol. 33(5), pages 1089-1113, October.
    20. Michel Grabisch & Christophe Labreuche, 2015. "On the decomposition of Generalized Additive Independence models," Post-Print halshs-01222546, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mse:cesdoc:16003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lucie Label (email available below). General contact details of provider: https://edirc.repec.org/data/cenp1fr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.