[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/max/cprwps/230.html
   My bibliography  Save this paper

Nonparametric Tests of Tail Behavior in Stochastic Frontier Models

Author

Abstract
This article studies tail behavior for the error components in the stochastic frontier model, where one component has bounded support on one side, and the other has unbounded support on both sides. Under weak assumptions on the error components, we derive nonparametric tests that the unbounded component distribution has thin tails and that the component tails are equivalent. The tests are useful diagnostic tools for stochastic frontier analysis and kernel deconvolution density estimation. A simulation study and an application to a stochastic cost frontier for 6,100 US banks from 1998 to 2005 are provided. The new tests reject the normal or Laplace distributional assumptions, which are commonly imposed in the existing literature.

Suggested Citation

  • William C. Horrace & Yulong Wang, 2020. "Nonparametric Tests of Tail Behavior in Stochastic Frontier Models," Center for Policy Research Working Papers 230, Center for Policy Research, Maxwell School, Syracuse University.
  • Handle: RePEc:max:cprwps:230
    as

    Download full text from publisher

    File URL: https://surface.syr.edu/cpr/264/
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Papadopoulos, Alecos & Parmeter, Christopher F., 2021. "Type II failure and specification testing in the Stochastic Frontier Model," European Journal of Operational Research, Elsevier, vol. 293(3), pages 990-1001.
    2. Jun Cai & William C. Horrace & Christopher F. Parmeter, 2021. "Density deconvolution with Laplace errors and unknown variance," Journal of Productivity Analysis, Springer, vol. 56(2), pages 103-113, December.
    3. Wei Wang & Christine Amsler & Peter Schmidt, 2011. "Goodness of fit tests in stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 35(2), pages 95-118, April.
    4. Graham Elliott & Ulrich K. Müller & Mark W. Watson, 2015. "Nearly Optimal Tests When a Nuisance Parameter Is Present Under the Null Hypothesis," Econometrica, Econometric Society, vol. 83, pages 771-811, March.
    5. Efthymios G. Tsionas, 2006. "Inference in dynamic stochastic frontier models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 669-676, July.
    6. Jean-Pierre Florens & Léopold Simar & Ingrid Van Keilegom, 2020. "Estimation of the Boundary of a Variable Observed With Symmetric Error," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 425-441, January.
    7. Schmidt, Peter & Lin, Tsai-Fen, 1984. "Simple tests of alternative specifications in stochastic frontier models," Journal of Econometrics, Elsevier, vol. 24(3), pages 349-361, March.
    8. Ulrich K. Müller & Yulong Wang, 2017. "Fixed- Asymptotic Inference About Tail Properties," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1334-1343, July.
    9. William Horrace & Christopher Parmeter, 2011. "Semiparametric deconvolution with unknown error variance," Journal of Productivity Analysis, Springer, vol. 35(2), pages 129-141, April.
    10. Kneip, Alois & Simar, Léopold & Van Keilegom, Ingrid, 2015. "Frontier estimation in the presence of measurement error with unknown variance," Journal of Econometrics, Elsevier, vol. 184(2), pages 379-393.
    11. Efthymios G. Tsionas, 2002. "Stochastic frontier models with random coefficients," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(2), pages 127-147.
    12. Xu Guo & Gao-Rong Li & Michael McAleer & Wing-Keung Wong, 2018. "Specification Testing of Production in a Stochastic Frontier Model," Sustainability, MDPI, vol. 10(9), pages 1-10, August.
    13. Waldman, Donald M., 1982. "A stationary point for the stochastic frontier likelihood," Journal of Econometrics, Elsevier, vol. 18(2), pages 275-279, February.
    14. Léopold Simar & Ingrid Keilegom & Valentin Zelenyuk, 2017. "Nonparametric least squares methods for stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 47(3), pages 189-204, June.
    15. Hung‐pin Lai & Subal C. Kumbhakar, 2020. "Estimation of a dynamic stochastic frontier model using likelihood‐based approaches," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(2), pages 217-247, March.
    16. Guohua Feng & Apostolos Serletis, 2009. "Efficiency and productivity of the US banking industry, 1998-2005: evidence from the Fourier cost function satisfying global regularity conditions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(1), pages 105-138.
    17. William C. Horrace & Ian A. Wright, 2020. "Stationary Points for Parametric Stochastic Frontier Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(3), pages 516-526, July.
    18. Kumbhakar, Subal C. & Parmeter, Christopher F. & Tsionas, Efthymios G., 2013. "A zero inefficiency stochastic frontier model," Journal of Econometrics, Elsevier, vol. 172(1), pages 66-76.
    19. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    20. van den Broeck, Julien & Koop, Gary & Osiewalski, Jacek & Steel, Mark F. J., 1994. "Stochastic frontier models : A Bayesian perspective," Journal of Econometrics, Elsevier, vol. 61(2), pages 273-303, April.
    21. Kopp, Raymond J. & Mullahy, John, 1990. "Moment-based estimation and testing of stochastic frontier models," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 165-183.
    22. Phill Wheat & Alexander D. Stead & William H. Greene, 2019. "Robust stochastic frontier analysis: a Student’s t-half normal model with application to highway maintenance costs in England," Journal of Productivity Analysis, Springer, vol. 51(1), pages 21-38, February.
    23. Amsler, Christine & Prokhorov, Artem & Schmidt, Peter, 2017. "Endogenous environmental variables in stochastic frontier models," Journal of Econometrics, Elsevier, vol. 199(2), pages 131-140.
    24. Leopold Simar & Paul Wilson, 2010. "Inferences from Cross-Sectional, Stochastic Frontier Models," Econometric Reviews, Taylor & Francis Journals, vol. 29(1), pages 62-98.
    25. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, vol. 62(6), pages 1383-1414, November.
    26. Yi-Ting Chen & Hung-Jen Wang, 2012. "Centered-Residuals-Based Moment Estimator and Test for Stochastic Frontier Models," Econometric Reviews, Taylor & Francis Journals, vol. 31(6), pages 625-653, November.
    27. Greene, William H., 1990. "A Gamma-distributed stochastic frontier model," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 141-163.
    28. Kumbhakar,Subal C. & Wang,Hung-Jen & Horncastle,Alan P., 2015. "A Practitioner's Guide to Stochastic Frontier Analysis Using Stata," Cambridge Books, Cambridge University Press, number 9781107029514, September.
    29. Efthymios G. Tsionas, 2007. "Efficiency Measurement with the Weibull Stochastic Frontier," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 69(5), pages 693-706, October.
    30. William C. Horrace & Christopher F. Parmeter, 2018. "A Laplace stochastic frontier model," Econometric Reviews, Taylor & Francis Journals, vol. 37(3), pages 260-280, March.
    31. Lee, Lung-Fei, 1983. "A test for distributional assumptions for the stochastic frontier functions," Journal of Econometrics, Elsevier, vol. 22(3), pages 245-267, August.
    32. Carree, Martin A., 2002. "Technological inefficiency and the skewness of the error component in stochastic frontier analysis," Economics Letters, Elsevier, vol. 77(1), pages 101-107, September.
    33. Christensen, Laurits R & Greene, William H, 1976. "Economies of Scale in U.S. Electric Power Generation," Journal of Political Economy, University of Chicago Press, vol. 84(4), pages 655-676, August.
    34. Robin C. Sickles & William C. Horrace (ed.), 2014. "Festschrift in Honor of Peter Schmidt," Springer Books, Springer, edition 127, number 978-1-4899-8008-3, June.
    35. Bauer, Paul W., 1990. "Recent developments in the econometric estimation of frontiers," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 39-56.
    36. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    37. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
    38. Camilla Mastromarco & Laura Serlenga & Yongcheol Shin, 2016. "Modelling Technical Efficiency in Cross Sectionally Dependent Stochastic Frontier Panels," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(1), pages 281-297, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kamil Makieła & Błażej Mazur, 2022. "Model uncertainty and efficiency measurement in stochastic frontier analysis with generalized errors," Journal of Productivity Analysis, Springer, vol. 58(1), pages 35-54, August.
    2. Tsionas, Mike G. & Patel, Pankaj C., 2023. "Accounting for intra-industry technological heterogeneity in the measurement of operations efficiency," International Journal of Production Economics, Elsevier, vol. 260(C).
    3. Jun Cai & William C. Horrace & Christopher F. Parmeter, 2024. "Penalized sieve estimation of zero‐inefficiency stochastic frontiers," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 41-65, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Ming-Yen & Wang, Shouxia & Xia, Lucy & Zhang, Xibin, 2024. "Testing specification of distribution in stochastic frontier analysis," Journal of Econometrics, Elsevier, vol. 239(2).
    2. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    3. Jun Cai & William C. Horrace & Christopher F. Parmeter, 2021. "Density deconvolution with Laplace errors and unknown variance," Journal of Productivity Analysis, Springer, vol. 56(2), pages 103-113, December.
    4. Papadopoulos, Alecos & Parmeter, Christopher F., 2021. "Type II failure and specification testing in the Stochastic Frontier Model," European Journal of Operational Research, Elsevier, vol. 293(3), pages 990-1001.
    5. Kamil Makieła & Błażej Mazur, 2020. "Bayesian Model Averaging and Prior Sensitivity in Stochastic Frontier Analysis," Econometrics, MDPI, vol. 8(2), pages 1-22, April.
    6. Kamil Makie{l}a & B{l}a.zej Mazur, 2020. "Stochastic Frontier Analysis with Generalized Errors: inference, model comparison and averaging," Papers 2003.07150, arXiv.org, revised Oct 2020.
    7. Kamil Makieła & Błażej Mazur, 2022. "Model uncertainty and efficiency measurement in stochastic frontier analysis with generalized errors," Journal of Productivity Analysis, Springer, vol. 58(1), pages 35-54, August.
    8. Xu Guo & Gao-Rong Li & Michael McAleer & Wing-Keung Wong, 2018. "Specification Testing of Production in a Stochastic Frontier Model," Sustainability, MDPI, vol. 10(9), pages 1-10, August.
    9. Christopher F. Parmeter & Shirong Zhao, 2023. "An alternative corrected ordinary least squares estimator for the stochastic frontier model," Empirical Economics, Springer, vol. 64(6), pages 2831-2857, June.
    10. Luis R. Murillo‐Zamorano, 2004. "Economic Efficiency and Frontier Techniques," Journal of Economic Surveys, Wiley Blackwell, vol. 18(1), pages 33-77, February.
    11. Simos G. Meintanis & Christos K. Papadimitriou, 2022. "Goodness--of--fit tests for stochastic frontier models based on the characteristic function," Journal of Productivity Analysis, Springer, vol. 57(3), pages 285-296, June.
    12. Stead, Alexander D. & Wheat, Phill & Greene, William H., 2023. "Robust maximum likelihood estimation of stochastic frontier models," European Journal of Operational Research, Elsevier, vol. 309(1), pages 188-201.
    13. Orea, Luis, 2019. "The Econometric Measurement of Firms’ Efficiency," Efficiency Series Papers 2019/02, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    14. Zangin Zeebari & Kristofer Månsson & Pär Sjölander & Magnus Söderberg, 2023. "Regularized conditional estimators of unit inefficiency in stochastic frontier analysis, with application to electricity distribution market," Journal of Productivity Analysis, Springer, vol. 59(1), pages 79-97, February.
    15. Jun Cai & Qu Feng & William C. Horrace & Guiying Laura Wu, 2021. "Wrong skewness and finite sample correction in the normal-half normal stochastic frontier model," Empirical Economics, Springer, vol. 60(6), pages 2837-2866, June.
    16. William C. Horrace & Christopher F. Parmeter, 2018. "A Laplace stochastic frontier model," Econometric Reviews, Taylor & Francis Journals, vol. 37(3), pages 260-280, March.
    17. Jun Cai & William C. Horrace & Christopher F. Parmeter, 2024. "Penalized sieve estimation of zero‐inefficiency stochastic frontiers," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 41-65, January.
    18. Deng, Yaguo, 2024. "A Bayesian semi-parametric approach to stochastic frontier models with inefficiency heterogeneity," DES - Working Papers. Statistics and Econometrics. WS 43837, Universidad Carlos III de Madrid. Departamento de Estadística.
    19. Phill Wheat & Alexander D. Stead & William H. Greene, 2019. "Robust stochastic frontier analysis: a Student’s t-half normal model with application to highway maintenance costs in England," Journal of Productivity Analysis, Springer, vol. 51(1), pages 21-38, February.
    20. Alexander D. Stead & Phill Wheat & William H. Greene, 2023. "On hypothesis testing in latent class and finite mixture stochastic frontier models, with application to a contaminated normal-half normal model," Journal of Productivity Analysis, Springer, vol. 60(1), pages 37-48, August.

    More about this item

    Keywords

    Hypothesis Testing; Production; Inefficiency; Deconvolution; Extreme Value Theory;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:max:cprwps:230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Katrina Fiacchi (email available below). General contact details of provider: https://edirc.repec.org/data/cpsyrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.