[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/koc/wpaper/1607.html
   My bibliography  Save this paper

The Market Resources Method for Solving Dynamic Optimization Problems

Author

Listed:
  • Ayse Kabukcuoglu

    (Koc University)

  • Enrique Martínez-García

    (Federal Reserve Bank of Dallas, Southern Methodist University)

Abstract
We introduce the market resources method (MRM) for solving dynamic optimization problems. MRM extends Carroll’s (2006) endogenous grid point method (EGM) for problems with more than one control variable using policy function iteration. The MRM algorithm is simple to implement and provides advantages in terms of speed and accuracy over Howard’s policy improvement algorithm. Codes are available.

Suggested Citation

  • Ayse Kabukcuoglu & Enrique Martínez-García, 2016. "The Market Resources Method for Solving Dynamic Optimization Problems," Koç University-TUSIAD Economic Research Forum Working Papers 1607, Koc University-TUSIAD Economic Research Forum.
  • Handle: RePEc:koc:wpaper:1607
    as

    Download full text from publisher

    File URL: http://eaf.ku.edu.tr/sites/eaf.ku.edu.tr/files/erf_wp_1607.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, April.
    2. Giulio Fella, 2014. "A generalized endogenous grid method for non-smooth and non-concave problems," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 17(2), pages 329-344, April.
    3. Maliar, Lilia & Maliar, Serguei, 2013. "Envelope condition method versus endogenous grid method for solving dynamic programming problems," Economics Letters, Elsevier, vol. 120(2), pages 262-266.
    4. den Haan, Wouter J & Marcet, Albert, 1990. "Solving the Stochastic Growth Model by Parameterizing Expectations," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(1), pages 31-34, January.
    5. White, Matthew N., 2015. "The method of endogenous gridpoints in theory and practice," Journal of Economic Dynamics and Control, Elsevier, vol. 60(C), pages 26-41.
    6. Tauchen, George, 1986. "Finite state markov-chain approximations to univariate and vector autoregressions," Economics Letters, Elsevier, vol. 20(2), pages 177-181.
    7. Kydland, Finn E & Prescott, Edward C, 1982. "Time to Build and Aggregate Fluctuations," Econometrica, Econometric Society, vol. 50(6), pages 1345-1370, November.
    8. S. Rao Aiyagari, 1994. "Uninsured Idiosyncratic Risk and Aggregate Saving," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 109(3), pages 659-684.
    9. Carroll, Christopher D., 2006. "The method of endogenous gridpoints for solving dynamic stochastic optimization problems," Economics Letters, Elsevier, vol. 91(3), pages 312-320, June.
    10. Ljungqvist, Lars & Sargent, Thomas J., 2012. "Recursive Macroeconomic Theory, Third Edition," MIT Press Books, The MIT Press, edition 3, volume 1, number 0262018748, April.
    11. Imrohoruglu, Ayse, 1989. "Cost of Business Cycles with Indivisibilities and Liquidity Constraints," Journal of Political Economy, University of Chicago Press, vol. 97(6), pages 1364-1383, December.
    12. Unknown, 1986. "Letters," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 1(4), pages 1-9.
    13. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.
    14. Barillas, Francisco & Fernandez-Villaverde, Jesus, 2007. "A generalization of the endogenous grid method," Journal of Economic Dynamics and Control, Elsevier, vol. 31(8), pages 2698-2712, August.
    15. Pontus Rendahl, 2015. "Inequality Constraints and Euler Equation‐based Solution Methods," Economic Journal, Royal Economic Society, vol. 125(585), pages 1110-1135, June.
    16. Hintermaier, Thomas & Koeniger, Winfried, 2010. "The method of endogenous gridpoints with occasionally binding constraints among endogenous variables," Journal of Economic Dynamics and Control, Elsevier, vol. 34(10), pages 2074-2088, October.
    17. Judd, Kenneth L., 1992. "Projection methods for solving aggregate growth models," Journal of Economic Theory, Elsevier, vol. 58(2), pages 410-452, December.
    18. Coleman, Wilbur John, II, 1990. "Solving the Stochastic Growth Model by Policy-Function Iteration," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(1), pages 27-29, January.
    19. Martin L. Puterman & Shelby L. Brumelle, 1979. "On the Convergence of Policy Iteration in Stationary Dynamic Programming," Mathematics of Operations Research, INFORMS, vol. 4(1), pages 60-69, February.
    20. Huggett, Mark, 1993. "The risk-free rate in heterogeneous-agent incomplete-insurance economies," Journal of Economic Dynamics and Control, Elsevier, vol. 17(5-6), pages 953-969.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ayşe Kabukçuoğlu & Enrique Martínez-García, 2021. "A Generalized Time Iteration Method for Solving Dynamic Optimization Problems with Occasionally Binding Constraints," Computational Economics, Springer;Society for Computational Economics, vol. 58(2), pages 435-460, August.
    2. Alexander Ludwig & Matthias Schön, 2018. "Endogenous Grids in Higher Dimensions: Delaunay Interpolation and Hybrid Methods," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 463-492, March.
    3. Robert Kirkby Author-Email: robertkirkby@gmail.com|, 2017. "Convergence of Discretized Value Function Iteration," Computational Economics, Springer;Society for Computational Economics, vol. 49(1), pages 117-153, January.
    4. Barillas, Francisco & Fernandez-Villaverde, Jesus, 2007. "A generalization of the endogenous grid method," Journal of Economic Dynamics and Control, Elsevier, vol. 31(8), pages 2698-2712, August.
    5. Anagnostopoulos Alexis & Tang Xin, 2015. "Evaluating linear approximations in a two-country model with occasionally binding borrowing constraints," The B.E. Journal of Macroeconomics, De Gruyter, vol. 15(1), pages 43-91, January.
    6. Keyvan Eslami & Tom Phelan, 2023. "The Art of Temporal Approximation An Investigation into Numerical Solutions to Discrete and Continuous-Time Problems in Economics," Working Papers 23-10, Federal Reserve Bank of Cleveland.
    7. Heer Burkhard & Maußner Alfred, 2011. "Value Function Iteration as a Solution Method for the Ramsey Model," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(4), pages 494-515, August.
    8. John Stachurski, 2009. "Economic Dynamics: Theory and Computation," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012774, April.
    9. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.
    10. Hull, Isaiah, 2015. "Approximate dynamic programming with post-decision states as a solution method for dynamic economic models," Journal of Economic Dynamics and Control, Elsevier, vol. 55(C), pages 57-70.
    11. Lilia Maliar & Serguei Maliar, 2016. "Ruling Out Multiplicity of Smooth Equilibria in Dynamic Games: A Hyperbolic Discounting Example," Dynamic Games and Applications, Springer, vol. 6(2), pages 243-261, June.
    12. Jeppe Druedahl, 2021. "A Guide on Solving Non-convex Consumption-Saving Models," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 747-775, October.
    13. Iskhakov, Fedor, 2015. "Multidimensional endogenous gridpoint method: Solving triangular dynamic stochastic optimization problems without root-finding operations," Economics Letters, Elsevier, vol. 135(C), pages 72-76.
    14. Judd, Kenneth L. & Maliar, Lilia & Maliar, Serguei & Valero, Rafael, 2014. "Smolyak method for solving dynamic economic models: Lagrange interpolation, anisotropic grid and adaptive domain," Journal of Economic Dynamics and Control, Elsevier, vol. 44(C), pages 92-123.
    15. Enrique Mendoza & Sergio Villalvazo, 2020. "FiPIt: A Simple, Fast Global Method for Solving Models with Two Endogenous States & Occasionally Binding Constraints," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 37, pages 81-102, July.
    16. Hintermaier, Thomas & Koeniger, Winfried, 2010. "The method of endogenous gridpoints with occasionally binding constraints among endogenous variables," Journal of Economic Dynamics and Control, Elsevier, vol. 34(10), pages 2074-2088, October.
    17. Youngsoo Jang & Soyoung Lee, 2021. "A Generalized Endogenous Grid Method for Default Risk Models," Staff Working Papers 21-11, Bank of Canada.
    18. Arellano, Cristina & Maliar, Lilia & Maliar, Serguei & Tsyrennikov, Viktor, 2016. "Envelope condition method with an application to default risk models," Journal of Economic Dynamics and Control, Elsevier, vol. 69(C), pages 436-459.
    19. Yasuo Hirose & Takeki Sunakawa, 2019. "Review of Solution and Estimation Methods for Nonlinear Dynamic Stochastic General Equilibrium Models with the Zero Lower Bound," The Japanese Economic Review, Japanese Economic Association, vol. 70(1), pages 51-104, March.
    20. Giulio Fella, 2014. "A generalized endogenous grid method for non-smooth and non-concave problems," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 17(2), pages 329-344, April.

    More about this item

    Keywords

    DSGE models; Computational methods; Policy function iteration; Endogenous grid.;
    All these keywords.

    JEL classification:

    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C68 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computable General Equilibrium Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:koc:wpaper:1607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sumru Oz (email available below). General contact details of provider: https://edirc.repec.org/data/dekoctr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.