[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/kob/dpaper/dp2017-30.html
   My bibliography  Save this paper

Profit or Environment? A System Dynamic Model Analysis of Waste Electrical and Electronic Equipment Management System in China

Author

Listed:
  • Qinxin Guo

    (Graduate School of Economics, Kobe University, Japan)

  • Enci Wang

    (School of Economics, Shanghai University, China)

  • Yongyou Nie

    (School of Economics, Shanghai University, China)

  • Junyi Shen

    (Research Institute for Economics & Business Administration (RIEB), Kobe University, Japan, and School of Economics, Shanghai University, China)

Abstract
In the past decade, sales of electrical and electronic equipment have undergone explosive growth worldwide, while at the same time, the life cycles of electrical and electronic equipment have been getting shorter. This has resulted in large numbers of waste electrical and electronic equipment (WEEE) being generated, which causes serious environmental problems that each country has to face. In this paper, we use the system dynamic method to analyze how China’s “WEEE processing fund” policy, wherein levies or subsidies are set on appropriate targets, influences the economic and environmental conditions of participants in the WEEE management system. The simulations results suggest that the “WEEE processing fund” policy could improve the economic status of those receiving subsidies without losing the economic revenue from levies and improve the entire system’s ability to recover and process waste equipment.

Suggested Citation

  • Qinxin Guo & Enci Wang & Yongyou Nie & Junyi Shen, 2017. "Profit or Environment? A System Dynamic Model Analysis of Waste Electrical and Electronic Equipment Management System in China," Discussion Paper Series DP2017-30, Research Institute for Economics & Business Administration, Kobe University.
  • Handle: RePEc:kob:dpaper:dp2017-30
    as

    Download full text from publisher

    File URL: https://www.rieb.kobe-u.ac.jp/academic/ra/dp/English/DP2017-30.pdf
    File Function: First version, 2017
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Besiou, Maria & Georgiadis, Patroklos & Van Wassenhove, Luk N., 2012. "Official recycling and scavengers: Symbiotic or conflicting?," European Journal of Operational Research, Elsevier, vol. 218(2), pages 563-576.
    2. Poles, Roberto, 2013. "System Dynamics modelling of a production and inventory system for remanufacturing to evaluate system improvement strategies," International Journal of Production Economics, Elsevier, vol. 144(1), pages 189-199.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Govindan, Kannan & Soleimani, Hamed & Kannan, Devika, 2015. "Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future," European Journal of Operational Research, Elsevier, vol. 240(3), pages 603-626.
    2. Zhang, Abraham & Wang, Jason X. & Farooque, Muhammad & Wang, Yulan & Choi, Tsan-Ming, 2021. "Multi-dimensional circular supply chain management: A comparative review of the state-of-the-art practices and research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    3. Negar Jalilian & Seyed Mahmoud Zanjirchi & Alireza Naser Sadrabadi & Ahmadreza Asgharpourmasouleh & Mark Goh, 2021. "Agent-Based Approach to Configure Processes in Iran’s Banking Service Supply Chain," Sustainability, MDPI, vol. 13(14), pages 1-23, July.
    4. Liu, Huihui & Lei, Ming & Deng, Honghui & Keong Leong, G. & Huang, Tao, 2016. "A dual channel, quality-based price competition model for the WEEE recycling market with government subsidy," Omega, Elsevier, vol. 59(PB), pages 290-302.
    5. Zerbino, Pierluigi & Stefanini, Alessandro & Aloini, Davide & Dulmin, Riccardo & Mininno, Valeria, 2021. "Curling linearity into circularity: The benefits of formal scavenging in closed-loop settings," International Journal of Production Economics, Elsevier, vol. 240(C).
    6. Tian, Gang & Wang, Yumeng & Gong, Yu & Tian, Yi & Piao, Xuexu & Zhang, Tianyu, 2024. "The contagion mechanism and governance strategy of corporate social irresponsibility of Chinese food companies," Food Policy, Elsevier, vol. 122(C).
    7. Tao Chu & Jingai Ma & Yongguang Zhong & Hao Sun & Weiqiang Jia, 2024. "Shared recycling model for waste electrical and electronic equipment based on the targeted responsibility system in the context of China," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-26, December.
    8. Monika & Garima Chopra, 2024. "Reliability assessment of an industrial system considering failures in its raw material inventory," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(6), pages 2704-2714, June.
    9. Stadnicka, Dorota & Litwin, Paweł, 2019. "Value stream mapping and system dynamics integration for manufacturing line modelling and analysis," International Journal of Production Economics, Elsevier, vol. 208(C), pages 400-411.
    10. Chen, Xudong & Fujita, Tsuyoshi & Hayashi, Yoshitsugu & Kato, Hirokazu & Geng, Yong, 2014. "Determining optimal resource recycling boundary at regional level: A case study on Tokyo Metropolitan Area in Japan," European Journal of Operational Research, Elsevier, vol. 233(2), pages 337-348.
    11. Li, Ye & Yang, Tianjian & Zhang, Yu, 2022. "Evolutionary game theory-based system dynamics modeling for community solid waste classification in China," Utilities Policy, Elsevier, vol. 79(C).
    12. Guanshuang Jiang & Qi Wang & Ke Wang & Qianyu Zhang & Jian Zhou, 2020. "A Novel Closed-Loop Supply Chain Network Design Considering Enterprise Profit and Service Level," Sustainability, MDPI, vol. 12(2), pages 1-21, January.
    13. Pérez-Pérez, Juan Fernando & Parra, Juan Felipe & Serrano-García, Jakeline, 2021. "A system dynamics model: Transition to sustainable processes," Technology in Society, Elsevier, vol. 65(C).
    14. Pourhejazy, Pourya & Zhang, Dali & Zhu, Qinghua & Wei, Fangfang & Song, Shuang, 2021. "Integrated E-waste transportation using capacitated general routing problem with time-window," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    15. Tianjian Yang & Ye Li & Simin Zhou, 2019. "System Dynamics Modeling of Dockless Bike-Sharing Program Operations: A Case Study of Mobike in Beijing, China," Sustainability, MDPI, vol. 11(6), pages 1-20, March.
    16. Katsoras, Efthymios & Georgiadis, Patroklos, 2022. "An integrated System Dynamics model for Closed Loop Supply Chains under disaster effects: The case of COVID-19," International Journal of Production Economics, Elsevier, vol. 253(C).
    17. Sylvia Mardiana, 2023. "Gasoline Policy Simulation to Increase Responsiveness Using System Dynamics: A Case Study of Indonesia’s Gasoline Downstream Supply Chain," International Journal of Energy Economics and Policy, Econjournals, vol. 13(6), pages 109-118, November.
    18. Samarghandi, Hamed, 2017. "Studying the impact of merged and divided storage policies on the profitability of a remanufacturing system with deteriorating revenues," International Journal of Production Economics, Elsevier, vol. 193(C), pages 160-171.
    19. Nazanin Hosseini Arian & Alireza Pooya & Fariborz Rahimnia & Ali Sibevei, 2021. "Assessment the effect of rapid prototyping implementation on supply chain sustainability: a system dynamics approach," Operations Management Research, Springer, vol. 14(3), pages 467-493, December.
    20. Huihui Liu & Xiaolin Wu & Desheng Dou & Xu Tang & G. Keong Leong, 2018. "Determining Recycling Fees and Subsidies in China’s WEEE Disposal Fund with Formal and Informal Sectors," Sustainability, MDPI, vol. 10(9), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kob:dpaper:dp2017-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Office of Promoting Research Collaboration, Research Institute for Economics & Business Administration, Kobe University (email available below). General contact details of provider: https://edirc.repec.org/data/rikobjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.