[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/iza/izadps/dp2357.html
   My bibliography  Save this paper

Is there a Causal Effect of High School Math on Labor Market Outcomes?

Author

Listed:
  • Joensen, Juanna Schrøter

    (University of Chicago)

  • Nielsen, Helena Skyt

    (Aarhus University)

Abstract
Outsourcing of jobs to low-wage countries has increased the focus on the accumulation of skills – such as Math skills – in high-wage countries. In this paper, we exploit a high school pilot scheme to identify the causal effect of advanced high school Math on labor market outcomes. The pilot scheme reduced the costs of choosing advanced Math because it allowed for at more flexible combination of Math with other courses. We find clear evidence of a causal relationship between Math and earnings for the students who are induced to choose Math after being exposed to the pilot scheme. The effect partly stems from the fact that these students end up with higher education.

Suggested Citation

  • Joensen, Juanna Schrøter & Nielsen, Helena Skyt, 2006. "Is there a Causal Effect of High School Math on Labor Market Outcomes?," IZA Discussion Papers 2357, Institute of Labor Economics (IZA).
  • Handle: RePEc:iza:izadps:dp2357
    as

    Download full text from publisher

    File URL: https://docs.iza.org/dp2357.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Christopher F Baum & Mark E. Schaffer & Steven Stillman, 2003. "Instrumental variables and GMM: Estimation and testing," Stata Journal, StataCorp LP, vol. 3(1), pages 1-31, March.
    2. Willis, Robert J & Rosen, Sherwin, 1979. "Education and Self-Selection," Journal of Political Economy, University of Chicago Press, vol. 87(5), pages 7-36, October.
    3. Hansen, Karsten T. & Heckman, James J. & Mullen, K.J.Kathleen J., 2004. "The effect of schooling and ability on achievement test scores," Journal of Econometrics, Elsevier, vol. 121(1-2), pages 39-98.
    4. Levine, Phillip B & Zimmerman, David J, 1995. "The Benefit of Additional High-School Math and Science Classes for Young Men and Women," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(2), pages 137-149, April.
    5. Vella, Francis & Verbeek, Marno, 1999. "Estimating and Interpreting Models with Endogenous Treatment Effects," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(4), pages 473-478, October.
    6. James Heckman & Justin L. Tobias & Edward Vytlacil, 2001. "Four Parameters of Interest in the Evaluation of Social Programs," Southern Economic Journal, John Wiley & Sons, vol. 68(2), pages 210-223, October.
    7. Joseph G. Altonji & Todd E. Elder & Christopher R. Taber, 2002. "An Evaluation of Instrumental Variable Strategies for Estimating the Effects of Catholic Schools," NBER Working Papers 9358, National Bureau of Economic Research, Inc.
    8. Joseph G. Altonji, 1995. "The Effects of High School Curriculum on Education and Labor Market Outcomes," Journal of Human Resources, University of Wisconsin Press, vol. 30(3), pages 409-438.
    9. Joshua D. Angrist, 2004. "Treatment effect heterogeneity in theory and practice," Economic Journal, Royal Economic Society, vol. 114(494), pages 52-83, March.
    10. Cameron, Stephen V & Heckman, James J, 1993. "The Nonequivalence of High School Equivalents," Journal of Labor Economics, University of Chicago Press, vol. 11(1), pages 1-47, January.
    11. Arcidiacono, Peter, 2004. "Ability sorting and the returns to college major," Journal of Econometrics, Elsevier, vol. 121(1-2), pages 343-375.
    12. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    13. James Heckman & Justin L. Tobias & Edward Vytlacil, 2001. "Four Parameters of Interest in the Evaluation of Social Programs," Southern Economic Journal, John Wiley & Sons, vol. 68(2), pages 210-223, October.
    14. Heather Rose & Julian R. Betts, 2004. "The Effect of High School Courses on Earnings," The Review of Economics and Statistics, MIT Press, vol. 86(2), pages 497-513, May.
    15. Philip Oreopoulos, 2006. "Estimating Average and Local Average Treatment Effects of Education when Compulsory Schooling Laws Really Matter," American Economic Review, American Economic Association, vol. 96(1), pages 152-175, March.
    16. Holler, Manfred J. & Høst, Viggo & Kristensen, Kai, 1992. "Decisions on strategic markets -- An experimental study," Scandinavian Journal of Management, Elsevier, vol. 8(2), pages 133-146, June.
    17. Melissa Osborne & Herbert Gintis & Samuel Bowles, 2001. "The Determinants of Earnings: A Behavioral Approach," Journal of Economic Literature, American Economic Association, vol. 39(4), pages 1137-1176, December.
    18. Jong–Wha Lee & Robert J. Barro, 2001. "Schooling Quality in a Cross–Section of Countries," Economica, London School of Economics and Political Science, vol. 68(272), pages 465-488, November.
    19. A. D. Roy, 1951. "Some Thoughts On The Distribution Of Earnings," Oxford Economic Papers, Oxford University Press, vol. 3(2), pages 135-146.
    20. Murnane, Richard J & Willett, John B & Levy, Frank, 1995. "The Growing Importance of Cognitive Skills in Wage Determination," The Review of Economics and Statistics, MIT Press, vol. 77(2), pages 251-266, May.
    21. James Heckman, 1997. "Instrumental Variables: A Study of Implicit Behavioral Assumptions Used in Making Program Evaluations," Journal of Human Resources, University of Wisconsin Press, vol. 32(3), pages 441-462.
    22. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, April.
    23. Albæk, Karsten, 2003. "Optimal adgangsregulering til de videregående uddannelser og elevers valg af fag i gymnasiet," Nationaløkonomisk tidsskrift, Nationaløkonomisk Forening, vol. 2003(1), pages 206-224.
    24. repec:bla:econom:v:68:y:2001:i:272:p:465-88 is not listed on IDEAS
    25. Janet Currie & Enrico Moretti, 2003. "Mother's Education and the Intergenerational Transmission of Human Capital: Evidence from College Openings," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(4), pages 1495-1532.
    26. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    27. Heckman, James J. & Lalonde, Robert J. & Smith, Jeffrey A., 1999. "The economics and econometrics of active labor market programs," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 31, pages 1865-2097, Elsevier.
    28. Blackburn, McKinley L & Neumark, David, 1993. "Omitted-Ability Bias and the Increase in the Return to Schooling," Journal of Labor Economics, University of Chicago Press, vol. 11(3), pages 521-544, July.
    29. James J. Heckman & Edward J. Vytlacil, 2000. "Local Instrumental Variables," NBER Technical Working Papers 0252, National Bureau of Economic Research, Inc.
    30. Jerik Hanushek & Dennis Kimko, 2006. "Schooling, Labor-force Quality, and the Growth of Nations," Voprosy obrazovaniya / Educational Studies Moscow, National Research University Higher School of Economics, issue 1, pages 154-193.
    31. Joseph G. Altonji & Todd E. Elder & Christopher R. Taber, 2005. "An Evaluation of Instrumental Variable Strategies for Estimating the Effects of Catholic Schooling," Journal of Human Resources, University of Wisconsin Press, vol. 40(4), pages 791-821.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angel de la Fuente & Antonio Ciccone, 2003. "Human capital in a global and knowledge-based economy," UFAE and IAE Working Papers 562.03, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    2. Pedro Carneiro & James J. Heckman & Edward J. Vytlacil, 2011. "Estimating Marginal Returns to Education," American Economic Review, American Economic Association, vol. 101(6), pages 2754-2781, October.
    3. Joshua Angrist & Ivan Fernandez-Val, 2010. "ExtrapoLATE-ing: External Validity and Overidentification in the LATE Framework," NBER Working Papers 16566, National Bureau of Economic Research, Inc.
    4. Nikolov, Plamen & Jimi, Nusrat & Chang, Jerray, 2020. "The Importance of Cognitive Domains and the Returns to Schooling in South Africa: Evidence from Two Labor Surveys," Labour Economics, Elsevier, vol. 65(C).
    5. James J. Heckman, 2008. "The Principles Underlying Evaluation Estimators with an Application to Matching," Annals of Economics and Statistics, GENES, issue 91-92, pages 9-73.
    6. Eric A. Hanushek & Ludger Woessmann, 2008. "The Role of Cognitive Skills in Economic Development," Journal of Economic Literature, American Economic Association, vol. 46(3), pages 607-668, September.
    7. Committee, Nobel Prize, 2021. "Answering causal questions using observational data," Nobel Prize in Economics documents 2021-2, Nobel Prize Committee.
    8. Heckman, James, 2001. "Accounting for Heterogeneity, Diversity and General Equilibrium in Evaluating Social Programmes," Economic Journal, Royal Economic Society, vol. 111(475), pages 654-699, November.
    9. Joshua D. Angrist, 2004. "Treatment effect heterogeneity in theory and practice," Economic Journal, Royal Economic Society, vol. 114(494), pages 52-83, March.
    10. Patrick Kline & Christopher R. Walters, 2019. "On Heckits, LATE, and Numerical Equivalence," Econometrica, Econometric Society, vol. 87(2), pages 677-696, March.
    11. Zamarro, Gema, 2010. "Accounting for heterogeneous returns in sequential schooling decisions," Journal of Econometrics, Elsevier, vol. 156(2), pages 260-276, June.
    12. John DiNardo & David S. Lee, 2010. "Program Evaluation and Research Designs," Working Papers 1228, Princeton University, Department of Economics, Industrial Relations Section..
    13. Belzil, Christian, 2007. "The return to schooling in structural dynamic models: a survey," European Economic Review, Elsevier, vol. 51(5), pages 1059-1105, July.
    14. James Heckman & Salvador Navarro-Lozano, 2004. "Using Matching, Instrumental Variables, and Control Functions to Estimate Economic Choice Models," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 30-57, February.
    15. Tobias Klein, 2013. "College education and wages in the U.K.: estimating conditional average structural functions in nonadditive models with binary endogenous variables," Empirical Economics, Springer, vol. 44(1), pages 135-161, February.
    16. Sana Khan & Gianna Claudia Giannelli & Lucia Ferrone, 2024. "Can Maternal Education Enhance Children's Dietary Diversity and Nutritional Outcomes? Evidence from 2003 Education Reform in Kenya," Working Papers - Economics wp2024_12.rdf, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    17. Mahdi Gholami & Samuel Muehlemann, 2024. "Mastering Math: A Gateway to Better Firms and Higher Earnings," Economics of Education Working Paper Series 0212, University of Zurich, Department of Business Administration (IBW), revised May 2024.
    18. DiNardo, John & Lee, David S., 2011. "Program Evaluation and Research Designs," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 5, pages 463-536, Elsevier.
    19. Falch, Torberg & Nyhus, Ole Henning & Strøm, Bjarne, 2014. "Causal effects of mathematics," Labour Economics, Elsevier, vol. 31(C), pages 174-187.
    20. Harry Patrinos & Chris Sakellariou, 2005. "Schooling and Labor Market Impacts of a Natural Policy Experiment," LABOUR, CEIS, vol. 19(4), pages 705-719, December.

    More about this item

    Keywords

    high school curriculum; instrumental variable; local average treatment effect; Math;
    All these keywords.

    JEL classification:

    • I20 - Health, Education, and Welfare - - Education - - - General
    • J24 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Human Capital; Skills; Occupational Choice; Labor Productivity

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iza:izadps:dp2357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Holger Hinte (email available below). General contact details of provider: https://edirc.repec.org/data/izaaade.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.