Model Averaging and Double Machine Learning
Author
Suggested Citation
Download full text from publisher
Other versions of this item:
- Achim Ahrens & Christian B. Hansen & Mark E. Schaffer & Thomas Wiemann, 2024. "Model Averaging and Double Machine Learning," Papers 2401.01645, arXiv.org, revised Sep 2024.
References listed on IDEAS
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018.
"Double/debiased machine learning for treatment and structural parameters,"
Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2017. "Double/Debiased Machine Learning for Treatment and Structural Parameters," NBER Working Papers 23564, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers CWP28/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers 28/17, Institute for Fiscal Studies.
- René Böheim & Philipp Stöllinger, 2021.
"Decomposition of the gender wage gap using the LASSO estimator,"
Applied Economics Letters, Taylor & Francis Journals, vol. 28(10), pages 817-828, June.
- René Böheim & Philipp Stöllinger, 2020. "Decomposition of the Gender Wage Gap using the LASSO Estimator," Economics working papers 2020-03, Department of Economics, Johannes Kepler University Linz, Austria.
- Francine D. Blau & Lawrence M. Kahn, 2017.
"The Gender Wage Gap: Extent, Trends, and Explanations,"
Journal of Economic Literature, American Economic Association, vol. 55(3), pages 789-865, September.
- Francine D. Blau & Lawrence Kahn, 2016. "The Gender Wage Gap: Extent, Trends, and Explanations," CESifo Working Paper Series 5722, CESifo.
- Blau, Francine D. & Kahn, Lawrence M., 2016. "The Gender Wage Gap: Extent, Trends, and Explanations," IZA Discussion Papers 9656, Institute of Labor Economics (IZA).
- Francine D. Blau & Lawrence M. Kahn, 2016. "The Gender Wage Gap: Extent, Trends, and Explanations," NBER Working Papers 21913, National Bureau of Economic Research, Inc.
- Oaxaca, Ronald, 1973.
"Male-Female Wage Differentials in Urban Labor Markets,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 14(3), pages 693-709, October.
- Ronald L Oaxaca, 1971. "Male-Female Wage Differentials in Urban Labor Markets," Working Papers 396, Princeton University, Department of Economics, Industrial Relations Section..
- Strittmatter, Anthony & Wunsch, Conny, 2021.
"The Gender Pay Gap Revisited with Big Data: Do Methodological Choices Matter?,"
Working papers
2021/05, Faculty of Business and Economics - University of Basel.
- Strittmatter, Anthony & Wunsch, Conny, 2021. "The Gender Pay Gap Revisited with Big Data: Do Methodological Choices Matter?," IZA Discussion Papers 14128, Institute of Labor Economics (IZA).
- Anthony Strittmatter & Conny Wunsch, 2021. "The Gender Pay Gap Revisited with Big Data: Do Methodological Choices Matter?," Papers 2102.09207, arXiv.org, revised Feb 2021.
- Anthony Strittmatter & Conny Wunsch, 2021. "The Gender Pay Gap Revisited with Big Data: Do Methodological Choices Matter?," CESifo Working Paper Series 8912, CESifo.
- Wunsch, Conny & Strittmatter, Anthony, 2021. "The Gender Pay Gap Revisited with Big Data: Do Methodological Choices Matter?," CEPR Discussion Papers 15840, C.E.P.R. Discussion Papers.
- A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012.
"Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain,"
Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
- Alexandre Belloni & D. Chen & Victor Chernozhukov & Christian Hansen, 2010. "Sparse models and methods for optimal instruments with an application to eminent domain," CeMMAP working papers CWP31/10, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Daniel Chen & Victor Chernozhukov & Christian Hansen, 2010. "Sparse Models and Methods for Optimal Instruments with an Application to Eminent Domain," Papers 1010.4345, arXiv.org, revised Apr 2015.
- Dominik Hangartner & Daniel Kopp & Michael Siegenthaler, 2021.
"Monitoring hiring discrimination through online recruitment platforms,"
Nature, Nature, vol. 589(7843), pages 572-576, January.
- Hangartner, Dominik & Kopp, Daniel & Siegenthaler, Michael, 2021. "Monitoring hiring discrimination through online recruitment platforms," LSE Research Online Documents on Economics 107549, London School of Economics and Political Science, LSE Library.
- David Card & A. Abigail Payne, 2021.
"High School Choices And The Gender Gap In Stem,"
Economic Inquiry, Western Economic Association International, vol. 59(1), pages 9-28, January.
- David Card & A. Abigail Payne, 2017. "High School Choices and the Gender Gap in STEM," NBER Working Papers 23769, National Bureau of Economic Research, Inc.
- David Card & A. Abigail Payne, 2017. "High School Choices and the Gender Gap in STEM," Melbourne Institute Working Paper Series wp2017n25, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.
- Kaspar Wuthrich & Ying Zhu, 2019. "Omitted variable bias of Lasso-based inference methods: A finite sample analysis," Papers 1903.08704, arXiv.org, revised Sep 2021.
- Benjamin Enke, 2020.
"Moral Values and Voting,"
Journal of Political Economy, University of Chicago Press, vol. 128(10), pages 3679-3729.
- Benjamin Enke, 2018. "Moral Values and Voting," NBER Working Papers 24268, National Bureau of Economic Research, Inc.
- A. Belloni & V. Chernozhukov & I. Fernández‐Val & C. Hansen, 2017.
"Program Evaluation and Causal Inference With High‐Dimensional Data,"
Econometrica, Econometric Society, vol. 85, pages 233-298, January.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fern'andez-Val & Christian Hansen, 2013. "Program Evaluation and Causal Inference with High-Dimensional Data," Papers 1311.2645, arXiv.org, revised Jan 2018.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2016. "Program evaluation and causal inference with high-dimensional data," CeMMAP working papers 13/16, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2016. "Program evaluation and causal inference with high-dimensional data," CeMMAP working papers CWP13/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Matthew Gentzkow & Jesse M. Shapiro, 2010.
"What Drives Media Slant? Evidence From U.S. Daily Newspapers,"
Econometrica, Econometric Society, vol. 78(1), pages 35-71, January.
- Matthew Gentzkow & Jesse M. Shapiro, 2006. "What Drives Media Slant? Evidence from U.S. Daily Newspapers," NBER Working Papers 12707, National Bureau of Economic Research, Inc.
- Callaway, Brantly & Sant’Anna, Pedro H.C., 2021.
"Difference-in-Differences with multiple time periods,"
Journal of Econometrics, Elsevier, vol. 225(2), pages 200-230.
- Brantly Callaway & Pedro H. C. Sant'Anna, 2018. "Difference-in-Differences with Multiple Time Periods," Papers 1803.09015, arXiv.org, revised Dec 2020.
- Achim Ahrens & Christian B. Hansen & Mark E. Schaffer & Thomas Wiemann, 2024.
"ddml: Double/debiased machine learning in Stata,"
Stata Journal, StataCorp LP, vol. 24(1), pages 3-45, March.
- Christian B. Hansen & Mark E. Schaffer & Thomas Wiemann & Achim Ahrens, 2022. "ddml: Double/debiased machine learning in Stata," Swiss Stata Conference 2022 02, Stata Users Group.
- Ahrens, Achim & Hansen, Christian B. & Schaffer, Mark E & Wiemann, Thomas, 2023. "ddml: Double/Debiased Machine Learning in Stata," IZA Discussion Papers 15963, Institute of Labor Economics (IZA).
- Achim Ahrens & Christian B. Hansen & Mark E. Schaffer & Thomas Wiemann, 2023. "ddml: Double/debiased machine learning in Stata," Papers 2301.09397, arXiv.org, revised Jan 2024.
- Duncan Sheppard Gilchrist & Emily Glassberg Sands, 2016. "Something to Talk About: Social Spillovers in Movie Consumption," Journal of Political Economy, University of Chicago Press, vol. 124(5), pages 1339-1382.
- Goller, Daniel & Lechner, Michael & Moczall, Andreas & Wolff, Joachim, 2020.
"Does the estimation of the propensity score by machine learning improve matching estimation? The case of Germany's programmes for long term unemployed,"
Labour Economics, Elsevier, vol. 65(C).
- Goller, Daniel & Lechner, Michael & Moczall, Andreas & Wolff, Joachim, 2019. "Does the Estimation of the Propensity Score by Machine Learning Improve Matching Estimation? The Case of Germany's Programmes for Long Term Unemployed," IZA Discussion Papers 12526, Institute of Labor Economics (IZA).
- Goller, Daniel & Lechner, Michael & Moczall, Andreas & Wolff, Joachim, 2019. "Does the estimation of the propensity score by machine learning improve matching estimation? The case of Germany’s programmes for long term unemployed," Economics Working Paper Series 1910, University of St. Gallen, School of Economics and Political Science.
- Goller, Daniel & Lechner, Michael & Moczall, Andreas & Wolff, Joachim, 2020. "Does the estimation of the propensity score by machine learning improve matching estimation? : The case of Germany's programmes for long term unemployed," IAB-Discussion Paper 202005, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
- Poterba, James M. & Venti, Steven F. & Wise, David A., 1995.
"Do 401(k) contributions crowd out other personal saving?,"
Journal of Public Economics, Elsevier, vol. 58(1), pages 1-32, September.
- James M. Poterba & Steven F. Venti & David A. Wise, 1993. "Do 401(k) Contributions Crowd Out Other Persoanl Saving?," NBER Working Papers 4391, National Bureau of Economic Research, Inc.
- Joshua D. Angrist, 2022.
"Empirical Strategies in Economics: Illuminating the Path From Cause to Effect,"
Econometrica, Econometric Society, vol. 90(6), pages 2509-2539, November.
- Angrist, Joshua, 2021. "Empirical strategies in economics: Illuminating the path from cause to effect," Nobel Prize in Economics documents 2021-4, Nobel Prize Committee.
- Joshua Angrist, 2022. "Empirical Strategies in Economics: Illuminating the Path from Cause to Effect," NBER Working Papers 29726, National Bureau of Economic Research, Inc.
- Stefan Wager & Susan Athey, 2018.
"Estimation and Inference of Heterogeneous Treatment Effects using Random Forests,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
- Wager, Stefan & Athey, Susan, 2017. "Estimation and Inference of Heterogeneous Treatment Effects Using Random Forests," Research Papers 3576, Stanford University, Graduate School of Business.
- Michal Koles'ar & Ulrich K. Muller & Sebastian T. Roelsgaard, 2023. "The Fragility of Sparsity," Papers 2311.02299, arXiv.org, revised Jan 2024.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2021.
"Economic Predictions With Big Data: The Illusion of Sparsity,"
Econometrica, Econometric Society, vol. 89(5), pages 2409-2437, September.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio, 2017. "Economic Predictions with Big Data: The Illusion Of Sparsity," CEPR Discussion Papers 12256, C.E.P.R. Discussion Papers.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2018. "Economic Predictions with Big Data: The Illusion of Sparsity," Liberty Street Economics 20180521, Federal Reserve Bank of New York.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio E., 2021. "Economic predictions with big data: the illusion of sparsity," Working Paper Series 2542, European Central Bank.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2018. "Economic predictions with big data: the illusion of sparsity," Staff Reports 847, Federal Reserve Bank of New York.
- Achim Ahrens & Christian B. Hansen & Mark E. Schaffer, 2023.
"pystacked: Stacking generalization and machine learning in Stata,"
Stata Journal, StataCorp LP, vol. 23(4), pages 909-931, December.
- Achim Ahrens & Christian B. Hansen & Mark E. Schaffer, 2022. "pystacked: Stacking generalization and machine learning in Stata," Papers 2208.10896, arXiv.org, revised Mar 2023.
- Christian B. Hansen & Mark E. Schaffer & Achim Ahrens, 2022. "pystacked: Stacking generalization and machine learning in Stata," Swiss Stata Conference 2022 01, Stata Users Group.
- Diva Dhar & Tarun Jain & Seema Jayachandran, 2022.
"Reshaping Adolescents' Gender Attitudes: Evidence from a School-Based Experiment in India,"
American Economic Review, American Economic Association, vol. 112(3), pages 899-927, March.
- Diva Dhar & Tarun Jain & Seema Jayachandran, 2018. "Reshaping Adolescents' Gender Attitudes: Evidence from a School-Based Experiment in India," NBER Working Papers 25331, National Bureau of Economic Research, Inc.
- Jayachandran, Seema & Dhar, Diva & Jain, Tarun, 2018. "Reshaping Adolescents' Gender Attitudes: Evidence from a School-Based Experiment in India," CEPR Discussion Papers 13413, C.E.P.R. Discussion Papers.
- Shelly Lundberg & Jenna Stearns, 2019.
"Women in Economics: Stalled Progress,"
Journal of Economic Perspectives, American Economic Association, vol. 33(1), pages 3-22, Winter.
- Shelly Lundberg & Jenna Stearns, 2018. "Women in Economics: Stalled Progress," Working Papers 2018-090, Human Capital and Economic Opportunity Working Group.
- Lundberg, Shelly & Stearns, Jenna, 2018. "Women in Economics: Stalled Progress," IZA Discussion Papers 11974, Institute of Labor Economics (IZA).
- Max H. Farrell & Tengyuan Liang & Sanjog Misra, 2021.
"Deep Neural Networks for Estimation and Inference,"
Econometrica, Econometric Society, vol. 89(1), pages 181-213, January.
- Max H. Farrell & Tengyuan Liang & Sanjog Misra, 2018. "Deep Neural Networks for Estimation and Inference," Papers 1809.09953, arXiv.org, revised Sep 2019.
- Abdelghani Maddi & Yves Gingras, 2021.
"Gender Diversity In Research Teams And Citation Impact In Economics And Management,"
Journal of Economic Surveys, Wiley Blackwell, vol. 35(5), pages 1381-1404, December.
- Abdelghani Maddi & Yves Gingras, 2020. "Gender diversity in research teams and citation impact in Economics and Management," Papers 2011.14823, arXiv.org.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "Inference on Treatment Effects after Selection among High-Dimensional Controlsâ€," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(2), pages 608-650.
- Alan S. Blinder, 1973. "Wage Discrimination: Reduced Form and Structural Estimates," Journal of Human Resources, University of Wisconsin Press, vol. 8(4), pages 436-455.
- Patrick Bajari & Zhihao Cen & Victor Chernozhukov & Manoj Manukonda & Suhas Vijaykumar & Jin Wang & Ramon Huerta & Junbo Li & Ling Leng & George Monokroussos & Shan Wan, 2023.
"Hedonic Prices and Quality Adjusted Price Indices Powered by AI,"
Papers
2305.00044, arXiv.org.
- Patrick Bajari & Zhihao Cen & Victor Chernozhukov & Manoj Manukonda & Jin Wang & Ramon Huerta & Junbo Li & Ling Leng & George Monokroussos & Suhas Vijaykunar & Shan Wan, 2023. "Hedonic prices and quality adjusted price indices powered by AI," CeMMAP working papers 08/23, Institute for Fiscal Studies.
- Neng-Chieh Chang, 2020. "Double/debiased machine learning for difference-in-differences models," The Econometrics Journal, Royal Economic Society, vol. 23(2), pages 177-191.
- Margaret E. Roberts & Brandon M. Stewart & Richard A. Nielsen, 2020. "Adjusting for Confounding with Text Matching," American Journal of Political Science, John Wiley & Sons, vol. 64(4), pages 887-903, October.
- Philine Widmer & Sergio Galletta & Elliott Ash, 2022. "Media Slant is Contagious," Papers 2202.07269, arXiv.org, revised Apr 2023.
- Markus Eberhardt & Giovanni Facchini & Valeria Rueda, 2023.
"Gender Differences in Reference Letters: Evidence from the Economics Job Market,"
The Economic Journal, Royal Economic Society, vol. 133(655), pages 2676-2708.
- Eberhardt, Markus & Facchini, Giovanni & Rueda, Valeria, 2022. "Gender Differences in Reference Letters: Evidence from the Economics Job Market," IZA Discussion Papers 15055, Institute of Labor Economics (IZA).
- Eberhardt, Markus & Facchini, Giovanni & Rueda, Valeria, 2022. "Gender Differences in Reference Letters: Evidence from the Economics Job Market," CEPR Discussion Papers 16960, C.E.P.R. Discussion Papers.
- Markus Eberhardt & Giovanni Facchini & Valeria Rueda, 2023. "Gender differences in reference letters: Evidence from the Economics job market," Discussion Papers 2023-02, University of Nottingham, GEP.
- Erin Hengel, 2022. "Publishing While Female: are Women Held to Higher Standards? Evidence from Peer Review," The Economic Journal, Royal Economic Society, vol. 132(648), pages 2951-2991.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Achim Ahrens & Christian B. Hansen & Mark E. Schaffer & Thomas Wiemann, 2024.
"ddml: Double/debiased machine learning in Stata,"
Stata Journal, StataCorp LP, vol. 24(1), pages 3-45, March.
- Christian B. Hansen & Mark E. Schaffer & Thomas Wiemann & Achim Ahrens, 2022. "ddml: Double/debiased machine learning in Stata," Swiss Stata Conference 2022 02, Stata Users Group.
- Ahrens, Achim & Hansen, Christian B. & Schaffer, Mark E & Wiemann, Thomas, 2023. "ddml: Double/Debiased Machine Learning in Stata," IZA Discussion Papers 15963, Institute of Labor Economics (IZA).
- Achim Ahrens & Christian B. Hansen & Mark E. Schaffer & Thomas Wiemann, 2023. "ddml: Double/debiased machine learning in Stata," Papers 2301.09397, arXiv.org, revised Jan 2024.
- Agboola, Oluwagbenga David & Yu, Han, 2023. "Neighborhood-based cross fitting approach to treatment effects with high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
- Kyle Colangelo & Ying-Ying Lee, 2020. "Double Debiased Machine Learning Nonparametric Inference with Continuous Treatments," Papers 2004.03036, arXiv.org, revised Sep 2023.
- Kaspar Wuthrich & Ying Zhu, 2019. "Omitted variable bias of Lasso-based inference methods: A finite sample analysis," Papers 1903.08704, arXiv.org, revised Sep 2021.
- Johann Pfitzinger, 2021. "An Interpretable Neural Network for Parameter Inference," Papers 2106.05536, arXiv.org.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018.
"High-Dimensional Econometrics and Regularized GMM,"
Papers
1806.01888, arXiv.org, revised Jun 2018.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.
- Bonaccolto-Töpfer, Marina & Briel, Stephanie, 2022. "The gender pay gap revisited: Does machine learning offer new insights?," Labour Economics, Elsevier, vol. 78(C).
- Huber, Martin, 2019.
"An introduction to flexible methods for policy evaluation,"
FSES Working Papers
504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Martin Huber, 2019. "An introduction to flexible methods for policy evaluation," Papers 1910.00641, arXiv.org.
- Alena Skolkova, 2023. "Instrumental Variable Estimation with Many Instruments Using Elastic-Net IV," CERGE-EI Working Papers wp759, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
- Olga Takács & János Vincze, 2023. "Where is the pain the most acute? The market segments particularly affected by gender wage discrimination in Hungary," CERS-IE WORKING PAPERS 2304, Institute of Economics, Centre for Economic and Regional Studies.
- Michael Lechner & Jana Mareckova, 2024. "Comprehensive Causal Machine Learning," Papers 2405.10198, arXiv.org.
- Sant’Anna, Pedro H.C. & Zhao, Jun, 2020.
"Doubly robust difference-in-differences estimators,"
Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
- Pedro H. C. Sant'Anna & Jun B. Zhao, 2018. "Doubly Robust Difference-in-Differences Estimators," Papers 1812.01723, arXiv.org, revised May 2020.
- Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
- Michael C. Knaus, 2021.
"A double machine learning approach to estimate the effects of musical practice on student’s skills,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 282-300, January.
- Knaus, Michael C., 2018. "A Double Machine Learning Approach to Estimate the Effects of Musical Practice on Student's Skills," IZA Discussion Papers 11547, Institute of Labor Economics (IZA).
- Michael C. Knaus, 2018. "A Double Machine Learning Approach to Estimate the Effects of Musical Practice on Student's Skills," Papers 1805.10300, arXiv.org, revised Jan 2019.
- Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Philipp Bach & Victor Chernozhukov & Malte S. Kurz & Martin Spindler & Sven Klaassen, 2021. "DoubleML -- An Object-Oriented Implementation of Double Machine Learning in R," Papers 2103.09603, arXiv.org, revised Jun 2024.
- Mark Kattenberg & Bas Scheer & Jurre Thiel, 2023. "Causal forests with fixed effects for treatment effect heterogeneity in difference-in-differences," CPB Discussion Paper 452, CPB Netherlands Bureau for Economic Policy Analysis.
- Michael C Knaus, 2022.
"Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation],"
The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
- Knaus, Michael C., 2020. "Double Machine Learning based Program Evaluation under Unconfoundedness," Economics Working Paper Series 2004, University of St. Gallen, School of Economics and Political Science.
- Knaus, Michael C., 2020. "Double Machine Learning Based Program Evaluation under Unconfoundedness," IZA Discussion Papers 13051, Institute of Labor Economics (IZA).
- Michael C. Knaus, 2020. "Double Machine Learning based Program Evaluation under Unconfoundedness," Papers 2003.03191, arXiv.org, revised Jun 2022.
More about this item
Keywords
causal inference; partially linear model; high-dimensional models; super learners; nonparametric estimation;All these keywords.
JEL classification:
- C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
- C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
- J01 - Labor and Demographic Economics - - General - - - Labor Economics: General
- J08 - Labor and Demographic Economics - - General - - - Labor Economics Policies
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2024-02-19 (Big Data)
- NEP-LAB-2024-02-19 (Labour Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iza:izadps:dp16714. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Holger Hinte (email available below). General contact details of provider: https://edirc.repec.org/data/izaaade.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.