[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/irv/wpaper/141506.html
   My bibliography  Save this paper

The Bottleneck Model: An Assessment and Interpretation

Author

Listed:
  • Kenneth Small

    (Department of Economics, University of California-Irvine)

Abstract
The bottleneck model of congestion with endogenous scheduling has become a standard tool of transportation economics. It provides surprising insights about the time pattern of congestion, optimal pricing, and many distinct inefficiencies of unpriced equilibria including wrong departure order with heterogeneous preferences, wrong allocation of users across links of a network, and wrong order in which parking spaces are occupied. It illuminates the roles of travel-time reliability, traffic information, and extreme congestion ("hypercongestion"). It has been developed for use in practical network planning. Future use will probably emphasize greater realism, leading to more practical applications.

Suggested Citation

  • Kenneth Small, 2015. "The Bottleneck Model: An Assessment and Interpretation," Working Papers 141506, University of California-Irvine, Department of Economics.
  • Handle: RePEc:irv:wpaper:141506
    as

    Download full text from publisher

    File URL: https://www.economics.uci.edu/files/docs/workingpapers/2014-15/14-15-06.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arnott Richard & Kraus Marvin, 1995. "Financing Capacity in the Bottleneck Model," Journal of Urban Economics, Elsevier, vol. 38(3), pages 272-290, November.
    2. André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), 2011. "A Handbook of Transport Economics," Books, Edward Elgar Publishing, number 12679.
    3. Braid, Ralph M., 1996. "Peak-Load Pricing of a Transportation Route with an Unpriced Substitute," Journal of Urban Economics, Elsevier, vol. 40(2), pages 179-197, September.
    4. Alex Anas & Richard Arnott & Kenneth A. Small, 1998. "Urban Spatial Structure," Journal of Economic Literature, American Economic Association, vol. 36(3), pages 1426-1464, September.
    5. Fosgerau, Mogens, 2010. "On the relation between the mean and variance of delay in dynamic queues with random capacity and demand," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 598-603, April.
    6. Gubins, Sergejs & Verhoef, Erik T., 2014. "Dynamic bottleneck congestion and residential land use in the monocentric city," Journal of Urban Economics, Elsevier, vol. 80(C), pages 51-61.
    7. Daniel, Joseph I, 1995. "Congestion Pricing and Capacity of Large Hub Airports: A Bottleneck Model with Stochastic Queues," Econometrica, Econometric Society, vol. 63(2), pages 327-370, March.
    8. Moshe Ben-Akiva & Andre de Palma & Pavlos Kanaroglou, 1986. "Dynamic Model of Peak Period Traffic Congestion with Elastic Arrival Rates," Transportation Science, INFORMS, vol. 20(3), pages 164-181, August.
    9. Mogens Fosgerau & Kenneth Small, 2017. "Endogenous Scheduling Preferences And Congestion," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 58(2), pages 585-615, May.
    10. Arnott, Richard & Kraus, Marvin, 1998. "When are anonymous congestion charges consistent with marginal cost pricing?," Journal of Public Economics, Elsevier, vol. 67(1), pages 45-64, January.
    11. Silva, Hugo E. & Verhoef, Erik T. & van den Berg, Vincent A.C., 2014. "Airlines’ strategic interactions and airport pricing in a dynamic bottleneck model of congestion," Journal of Urban Economics, Elsevier, vol. 80(C), pages 13-27.
    12. Fosgerau, Mogens & Engelson, Leonid, 2011. "The value of travel time variance," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 1-8, January.
    13. Small, Kenneth A. & Yan, Jia, 2001. "The Value of "Value Pricing" of Roads: Second-Best Pricing and Product Differentiation," Journal of Urban Economics, Elsevier, vol. 49(2), pages 310-336, March.
    14. Li, Zheng & Hensher, David A. & Rose, John M., 2010. "Willingness to pay for travel time reliability in passenger transport: A review and some new empirical evidence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(3), pages 384-403, May.
    15. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1999. "Information and time-of-usage decisions in the bottleneck model with stochastic capacity and demand," European Economic Review, Elsevier, vol. 43(3), pages 525-548, March.
    16. Tseng, Yin-Yen & Verhoef, Erik T., 2008. "Value of time by time of day: A stated-preference study," Transportation Research Part B: Methodological, Elsevier, vol. 42(7-8), pages 607-618, August.
    17. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1991. "A temporal and spatial equilibrium analysis of commuter parking," Journal of Public Economics, Elsevier, vol. 45(3), pages 301-335, August.
    18. André de Palma & Robin Lindsey & Emile Quinet & Robert Vickerman, 2011. "Handbook Of Transport Economics," PSE-Ecole d'économie de Paris (Postprint) halshs-00754912, HAL.
    19. Arnott, Richard & Inci, Eren, 2006. "An integrated model of downtown parking and traffic congestion," Journal of Urban Economics, Elsevier, vol. 60(3), pages 418-442, November.
    20. Fosgerau, Mogens & de Palma, André, 2012. "Congestion in a city with a central bottleneck," Journal of Urban Economics, Elsevier, vol. 71(3), pages 269-277.
    21. Mohring, Herbert, 1970. "The Peak Load Problem with Increasing Returns and Pricing Constraints," American Economic Review, American Economic Association, vol. 60(4), pages 693-705, September.
    22. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1993. "A Structural Model of Peak-Period Congestion: A Traffic Bottleneck with Elastic Demand," American Economic Review, American Economic Association, vol. 83(1), pages 161-179, March.
    23. Daganzo, Carlos F., 2007. "Urban gridlock: Macroscopic modeling and mitigation approaches," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 49-62, January.
    24. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1992. "Route choice with heterogeneous drivers and group-specific congestion costs," Regional Science and Urban Economics, Elsevier, vol. 22(1), pages 71-102, March.
    25. Small, Kenneth A., 2001. "The Value of Pricing," University of California Transportation Center, Working Papers qt0rm449sx, University of California Transportation Center.
    26. Gordon F. Newell, 1987. "The Morning Commute for Nonidentical Travelers," Transportation Science, INFORMS, vol. 21(2), pages 74-88, May.
    27. Yang, Hai & Hai-Jun, Huang, 1997. "Analysis of the time-varying pricing of a bottleneck with elastic demand using optimal control theory," Transportation Research Part B: Methodological, Elsevier, vol. 31(6), pages 425-440, November.
    28. van den Berg, Vincent & Verhoef, Erik T., 2011. "Winning or losing from dynamic bottleneck congestion pricing?: The distributional effects of road pricing with heterogeneity in values of time and schedule delay," Journal of Public Economics, Elsevier, vol. 95(7-8), pages 983-992, August.
    29. Kenneth Button & Erik Verhoef (ed.), 1998. "Road Pricing, Traffic Congestion and the Environment," Books, Edward Elgar Publishing, number 940.
    30. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1990. "Economics of a bottleneck," Journal of Urban Economics, Elsevier, vol. 27(1), pages 111-130, January.
    31. Fosgerau, Mogens & Karlström, Anders, 2010. "The value of reliability," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 38-49, January.
    32. Geroliminis, Nikolas & Daganzo, Carlos F., 2008. "Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 759-770, November.
    33. Chris Hendrickson & George Kocur, 1981. "Schedule Delay and Departure Time Decisions in a Deterministic Model," Transportation Science, INFORMS, vol. 15(1), pages 62-77, February.
    34. Ben-Akiva, Moshe & Cyna, Michèle & de Palma, André, 1984. "Dynamic model of peak period congestion," Transportation Research Part B: Methodological, Elsevier, vol. 18(4-5), pages 339-355.
    35. Fosgerau, Mogens & Kim, Jinwon & Ranjan, Abhishek, 2018. "Vickrey meets Alonso: Commute scheduling and congestion in a monocentric city," Journal of Urban Economics, Elsevier, vol. 105(C), pages 40-53.
    36. van den Berg, Vincent & Verhoef, Erik T., 2011. "Winning or losing from dynamic bottleneck congestion pricing?," Journal of Public Economics, Elsevier, vol. 95(7), pages 983-992.
    37. Kenneth A. Small & Clifford Winston & Jia Yan, 2005. "Uncovering the Distribution of Motorists' Preferences for Travel Time and Reliability," Econometrica, Econometric Society, vol. 73(4), pages 1367-1382, July.
    38. Henderson, J. V., 1974. "Road congestion : A reconsideration of pricing theory," Journal of Urban Economics, Elsevier, vol. 1(3), pages 346-365, July.
    39. Masao Kuwahara, 1990. "Equilibrium Queueing Patterns at a Two-Tandem Bottleneck during the Morning Peak," Transportation Science, INFORMS, vol. 24(3), pages 217-229, August.
    40. Zhang, Xiaoning & Yang, Hai & Huang, Hai-Jun & Zhang, H. Michael, 2005. "Integrated scheduling of daily work activities and morning-evening commutes with bottleneck congestion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(1), pages 41-60, January.
    41. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    42. Small, Kenneth A, 1982. "The Scheduling of Consumer Activities: Work Trips," American Economic Review, American Economic Association, vol. 72(3), pages 467-479, June.
    43. Nikolas Geroliminis & David M. Levinson, 2009. "Cordon Pricing Consistent with the Physics of Overcrowding," Springer Books, in: William H. K. Lam & S. C. Wong & Hong K. Lo (ed.), Transportation and Traffic Theory 2009: Golden Jubilee, chapter 0, pages 219-240, Springer.
    44. Yang, Hai & Meng, Qiang, 1998. "Departure time, route choice and congestion toll in a queuing network with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 32(4), pages 247-260, May.
    45. Small, Kenneth A. & Yan, Jia, 2001. "The Value of "Value Pricing" of Roads: Second-Best Pricing and Product Differentiation," Journal of Urban Economics, Elsevier, vol. 49(2), pages 310-336, March.
    46. Braid, Ralph M., 1989. "Uniform versus peak-load pricing of a bottleneck with elastic demand," Journal of Urban Economics, Elsevier, vol. 26(3), pages 320-327, November.
    47. Siamak Ardekani & Robert Herman, 1987. "Urban Network-Wide Traffic Variables and Their Relations," Transportation Science, INFORMS, vol. 21(1), pages 1-16, February.
    48. Carlos F. Daganzo, 1985. "The Uniqueness of a Time-dependent Equilibrium Distribution of Arrivals at a Single Bottleneck," Transportation Science, INFORMS, vol. 19(1), pages 29-37, February.
    49. André de Palma & Mogens Fosgerau, 2011. "Dynamic Traffic Modeling," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 9, Edward Elgar Publishing.
    50. de Palma, André & Kilani, Moez & Lindsey, Robin, 2005. "Congestion pricing on a road network: A study using the dynamic equilibrium simulator METROPOLIS," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(7-9), pages 588-611.
    51. Erik T. Verhoef & Kenneth A. Small, 2004. "Product Differentiation on Roads," Journal of Transport Economics and Policy, University of Bath, vol. 38(1), pages 127-156, January.
    52. Small, Kenneth A., 2012. "Valuation of travel time," Economics of Transportation, Elsevier, vol. 1(1), pages 2-14.
    53. Inci, Eren, 2015. "A review of the economics of parking," Economics of Transportation, Elsevier, vol. 4(1), pages 50-63.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Small, Kenneth A., 2015. "The bottleneck model: An assessment and interpretation," Economics of Transportation, Elsevier, vol. 4(1), pages 110-117.
    2. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
    3. Mogens Fosgerau & Kurt Van Dender, 2013. "Road pricing with complications," Transportation, Springer, vol. 40(3), pages 479-503, May.
    4. Fosgerau, Mogens & de Palma, André, 2012. "Congestion in a city with a central bottleneck," Journal of Urban Economics, Elsevier, vol. 71(3), pages 269-277.
    5. Takayama, Yuki, 2020. "Who gains and who loses from congestion pricing in a monocentric city with a bottleneck?," Economics of Transportation, Elsevier, vol. 24(C).
    6. Takayama, Yuki & Kuwahara, Masao, 2017. "Bottleneck congestion and residential location of heterogeneous commuters," Journal of Urban Economics, Elsevier, vol. 100(C), pages 65-79.
    7. Small, Kenneth A., 2012. "Valuation of travel time," Economics of Transportation, Elsevier, vol. 1(1), pages 2-14.
    8. Ling-Ling Xiao & Hai-Jun Huang & Ronghui Liu, 2015. "Congestion Behavior and Tolls in a Bottleneck Model with Stochastic Capacity," Transportation Science, INFORMS, vol. 49(1), pages 46-65, February.
    9. Amirgholy, Mahyar & Gao, H. Oliver, 2017. "Modeling the dynamics of congestion in large urban networks using the macroscopic fundamental diagram: User equilibrium, system optimum, and pricing strategies," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 215-237.
    10. Mogens Fosgerau & André de Palma & Anders Karlstrom & Kenneth A. Small, 2012. "Trip timing and scheduling preferences," Working Papers hal-00742267, HAL.
    11. Takayama, Yuki & Kuwahara, Masao, 2016. "Scheduling preferences, parking competition, and bottleneck congestion: A model of trip timing and parking location choices by heterogeneous commuters," MPRA Paper 68938, University Library of Munich, Germany.
    12. Lamotte, Raphaël & de Palma, André & Geroliminis, Nikolas, 2017. "On the use of reservation-based autonomous vehicles for demand management," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 205-227.
    13. Takayama, Yuki, 2018. "Time-varying congestion tolling and urban spatial structure," MPRA Paper 89896, University Library of Munich, Germany.
    14. Chen, Hongyu & Liu, Yang & Nie, Yu (Marco), 2015. "Solving the step-tolled bottleneck model with general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 210-229.
    15. André de Palma & Mogens Fosgerau, 2011. "Dynamic Traffic Modeling," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 9, Edward Elgar Publishing.
    16. Xiao, Yu & Coulombel, Nicolas & Palma, André de, 2017. "The valuation of travel time reliability: does congestion matter?," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 113-141.
    17. Fosgerau, Mogens & de Palma, André, 2013. "The dynamics of urban traffic congestion and the price of parking," Journal of Public Economics, Elsevier, vol. 105(C), pages 106-115.
    18. Ramadurai, Gitakrishnan & Ukkusuri, Satish V. & Zhao, Jinye & Pang, Jong-Shi, 2010. "Linear complementarity formulation for single bottleneck model with heterogeneous commuters," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 193-214, February.
    19. Zhang, Xiaoning & Yang, Hai & Huang, Hai-Jun & Zhang, H. Michael, 2005. "Integrated scheduling of daily work activities and morning-evening commutes with bottleneck congestion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(1), pages 41-60, January.
    20. de Palma, André & Kilani, Moez & Lindsey, Robin, 2005. "Congestion pricing on a road network: A study using the dynamic equilibrium simulator METROPOLIS," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(7-9), pages 588-611.

    More about this item

    Keywords

    Congestion; Bottleneck; Scheduling; Congestion pricing; Parking; Reliability;
    All these keywords.

    JEL classification:

    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise
    • R48 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Government Pricing and Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:irv:wpaper:141506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Melissa Valdez (email available below). General contact details of provider: https://edirc.repec.org/data/deucius.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.