[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/inn/wpaper/2018-08.html
   My bibliography  Save this paper

Distributional regression forests for probabilistic precipitation forecasting in complex terrain

Author

Listed:
  • Lisa Schlosser
  • Torsten Hothorn
  • Reto Stauffer
  • Achim Zeileis
Abstract
To obtain a probabilistic model for a dependent variable based on some set of explanatory variables, a distributional approach is often adopted where the parameters of the distribution are linked to regressors. In many classical models this only captures the location of the distribution but over the last decade there has been increasing interest in distributional regression approaches modeling all parameters including location, scale, and shape. Notably, so-called non-homogenous Gaussian regression (NGR) models both mean and variance of a Gaussian response and is particularly popular in weather forecasting. More generally, the GAMLSS framework allows to establish generalized additive models for location, scale, and shape with smooth linear or nonlinear effects. However, when variable selection is required and/or there are non-smooth dependencies or interactions (especially unknown or of high-order), it is challenging to establish a good GAMLSS. A natural alternative in these situations would be the application of regression trees or random forests but, so far, no general distributional framework is available for these. Therefore, a framework for distributional regression trees and forests is proposed that blends regression trees and random forests with classical distributions from the GAMLSS framework as well as their censored or truncated counterparts. To illustrate these novel approaches in practice, they are employed to obtain probabilistic precipitation forecasts at numerous sites in a mountainous region (Tyrol, Austria) based on a large number of numerical weather prediction quantities. It is shown that the novel distributional regression forests automatically select variables and interactions, performing on par or often even better than GAMLSS specified either through prior meteorological knowledge or a computationally more demanding boosting approach.

Suggested Citation

  • Lisa Schlosser & Torsten Hothorn & Reto Stauffer & Achim Zeileis, 2018. "Distributional regression forests for probabilistic precipitation forecasting in complex terrain," Working Papers 2018-08, Faculty of Economics and Statistics, Universität Innsbruck, revised Nov 2018.
  • Handle: RePEc:inn:wpaper:2018-08
    as

    Download full text from publisher

    File URL: https://www2.uibk.ac.at/downloads/c4041030/wpaper/2018-08.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter Bauer & Alan Thorpe & Gilbert Brunet, 2015. "The quiet revolution of numerical weather prediction," Nature, Nature, vol. 525(7567), pages 47-55, September.
    2. Hofner, Benjamin & Mayr, Andreas & Schmid, Matthias, 2016. "gamboostLSS: An R Package for Model Building and Variable Selection in the GAMLSS Framework," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 74(i01).
    3. Stasinopoulos, D. Mikis & Rigby, Robert A., 2007. "Generalized Additive Models for Location Scale and Shape (GAMLSS) in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 23(i07).
    4. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    5. R. A. Rigby & D. M. Stasinopoulos, 2005. "Generalized additive models for location, scale and shape," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(3), pages 507-554, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Micha{l} Narajewski & Florian Ziel, 2020. "Ensemble Forecasting for Intraday Electricity Prices: Simulating Trajectories," Papers 2005.01365, arXiv.org, revised Aug 2020.
    2. Westgate, Bradford S. & Woodard, Dawn B. & Matteson, David S. & Henderson, Shane G., 2016. "Large-network travel time distribution estimation for ambulances," European Journal of Operational Research, Elsevier, vol. 252(1), pages 322-333.
    3. Alexander Henzi & Johanna F. Ziegel & Tilmann Gneiting, 2021. "Isotonic distributional regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 963-993, November.
    4. Gilbert, Ciaran & Browell, Jethro & McMillan, David, 2021. "Probabilistic access forecasting for improved offshore operations," International Journal of Forecasting, Elsevier, vol. 37(1), pages 134-150.
    5. Muschinski, Thomas & Mayr, Georg J. & Simon, Thorsten & Umlauf, Nikolaus & Zeileis, Achim, 2024. "Cholesky-based multivariate Gaussian regression," Econometrics and Statistics, Elsevier, vol. 29(C), pages 261-281.
    6. Boyao Zhang & Tobias Hepp & Sonja Greven & Elisabeth Bergherr, 2022. "Adaptive step-length selection in gradient boosting for Gaussian location and scale models," Computational Statistics, Springer, vol. 37(5), pages 2295-2332, November.
    7. Nadja Klein & Michel Denuit & Stefan Lang & Thomas Kneib, 2013. "Nonlife Ratemaking and Risk Management with Bayesian Additive Models for Location, Scale and Shape," Working Papers 2013-24, Faculty of Economics and Statistics, Universität Innsbruck.
    8. Narajewski, Michał & Ziel, Florian, 2020. "Ensemble forecasting for intraday electricity prices: Simulating trajectories," Applied Energy, Elsevier, vol. 279(C).
    9. Nicolai Hans & Nadja Klein & Florian Faschingbauer & Michael Schneider & Andreas Mayr, 2023. "Boosting distributional copula regression," Biometrics, The International Biometric Society, vol. 79(3), pages 2298-2310, September.
    10. Klein, Nadja & Denuit, Michel & Lang, Stefan & Kneib, Thomas, 2014. "Nonlife ratemaking and risk management with Bayesian generalized additive models for location, scale, and shape," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 225-249.
    11. Klein, Nadja & Denuit, Michel & Lang, Stefan & Kneib, Thomas, 2013. "Nonlife Ratemaking and Risk Management with Bayesian Additive Models for Location, Scale and Shape," LIDAM Discussion Papers ISBA 2013045, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Maike Hohberg & Peter Pütz & Thomas Kneib, 2020. "Treatment effects beyond the mean using distributional regression: Methods and guidance," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-29, February.
    13. Yixuan Wang & Jianzhu Li & Ping Feng & Rong Hu, 2015. "A Time-Dependent Drought Index for Non-Stationary Precipitation Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5631-5647, December.
    14. Panayi, Efstathios & Peters, Gareth W. & Danielsson, Jon & Zigrand, Jean-Pierre, 2018. "Designating market maker behaviour in limit order book markets," Econometrics and Statistics, Elsevier, vol. 5(C), pages 20-44.
    15. Gauss Cordeiro & Josemar Rodrigues & Mário Castro, 2012. "The exponential COM-Poisson distribution," Statistical Papers, Springer, vol. 53(3), pages 653-664, August.
    16. Christian Kleiber & Achim Zeileis, 2016. "Visualizing Count Data Regressions Using Rootograms," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 296-303, July.
    17. Riccardo De Bin & Vegard Grødem Stikbakke, 2023. "A boosting first-hitting-time model for survival analysis in high-dimensional settings," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 420-440, April.
    18. Matteo Malavasi & Gareth W. Peters & Pavel V. Shevchenko & Stefan Truck & Jiwook Jang & Georgy Sofronov, 2021. "Cyber Risk Frequency, Severity and Insurance Viability," Papers 2111.03366, arXiv.org, revised Mar 2022.
    19. Lucio Masserini & Matilde Bini & Monica Pratesi, 2017. "Effectiveness of non-selective evaluation test scores for predicting first-year performance in university career: a zero-inflated beta regression approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(2), pages 693-708, March.
    20. Tong, Edward N.C. & Mues, Christophe & Thomas, Lyn, 2013. "A zero-adjusted gamma model for mortgage loan loss given default," International Journal of Forecasting, Elsevier, vol. 29(4), pages 548-562.

    More about this item

    Keywords

    parametric models; regression trees; random forests; recursive partitioning; probabilistic forecasting; GAMLSS;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inn:wpaper:2018-08. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Janette Walde (email available below). General contact details of provider: https://edirc.repec.org/data/fuibkat.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.