[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/icr/wpmath/4-2005.html
   My bibliography  Save this paper

Non mean reverting affine processes for stochastic mortality

Author

Listed:
  • Elisa Luciano
  • Elena Vigna
Abstract
In this paper we use doubly stochastic processes (or Cox processes) in order to model the random evolution of mortality of an individual. These processes have been widely used in the credit risk literature in modelling default arrival, and in this context have proved to be quite flexible, especially when the intensity process is of the affine class. We investigate the applicability of affine processes in describing the individual's intensity of mortality, and provide a calibration to the Italian and UK populations. Results from the calibration seem to suggest that, in spite of their popularity in the financial context, mean reverting processes are not suitable for describing the death intensity of individuals. On the contrary, affine processes whose deterministic part increases exponentially seem to be appropriate. As for the stochastic part, negative jumps seem to do a better job than diffusive components. Stress analysis and analytical results indicate that increasing the randomness of the intensity process results in improvements in survivorship.

Suggested Citation

  • Elisa Luciano & Elena Vigna, 2005. "Non mean reverting affine processes for stochastic mortality," ICER Working Papers - Applied Mathematics Series 4-2005, ICER - International Centre for Economic Research.
  • Handle: RePEc:icr:wpmath:4-2005
    as

    Download full text from publisher

    File URL: http://www.bemservizi.unito.it/repec/icr/wp2005/ICERwp4-05.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    2. Duffie, Darrell & Singleton, Kenneth J, 1999. "Modeling Term Structures of Defaultable Bonds," The Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 687-720.
    3. Paolo Ghirardato & Massimo Marinacci, 2000. "Risk, Ambiguity and the Separation of Utility and Beliefs," Econometric Society World Congress 2000 Contributed Papers 1143, Econometric Society.
    4. Ronald Lee, 2000. "The Lee-Carter Method for Forecasting Mortality, with Various Extensions and Applications," North American Actuarial Journal, Taylor & Francis Journals, vol. 4(1), pages 80-91.
    5. Artzner, Philippe & Delbaen, Freddy, 1992. "Credit Risk and Prepayment Option," ASTIN Bulletin, Cambridge University Press, vol. 22(1), pages 81-96, May.
    6. Pitacco, Ermanno, 2004. "Survival models in a dynamic context: a survey," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 279-298, October.
    7. Domenico Menicucci, 2003. "Optimal two-object auctions with synergies," Review of Economic Design, Springer;Society for Economic Design, vol. 8(2), pages 143-164, October.
    8. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    9. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    10. Dahl, Mikkel, 2004. "Stochastic mortality in life insurance: market reserves and mortality-linked insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 113-136, August.
    11. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin, 2006. "Pricing Death: Frameworks for the Valuation and Securitization of Mortality Risk," ASTIN Bulletin, Cambridge University Press, vol. 36(1), pages 79-120, May.
    12. Brouhns, Natacha & Denuit, Michel & Vermunt, Jeroen K., 2002. "A Poisson log-bilinear regression approach to the construction of projected lifetables," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 373-393, December.
    13. Milevsky, Moshe A. & David Promislow, S., 2001. "Mortality derivatives and the option to annuitise," Insurance: Mathematics and Economics, Elsevier, vol. 29(3), pages 299-318, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elisa Luciano & Luca Regis & Elena Vigna, 2011. "Delta and Gamma hedging of mortality and interest rate risk," ICER Working Papers - Applied Mathematics Series 01-2011, ICER - International Centre for Economic Research.
    2. Luciano, Elisa & Regis, Luca & Vigna, Elena, 2012. "Delta–Gamma hedging of mortality and interest rate risk," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 402-412.
    3. Russo, Vincenzo & Giacometti, Rosella & Ortobelli, Sergio & Rachev, Svetlozar & Fabozzi, Frank J., 2011. "Calibrating affine stochastic mortality models using term assurance premiums," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 53-60, July.
    4. Biffis, Enrico, 2005. "Affine processes for dynamic mortality and actuarial valuations," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 443-468, December.
    5. Elisa Luciano & Elena Vigna, 2005. "A note on stochastic survival probabilities and their calibration," ICER Working Papers - Applied Mathematics Series 1-2005, ICER - International Centre for Economic Research.
    6. LUCIANO, Elisa & VIGNA, Elena, 2008. "Mortality risk via affine stochastic intensities: calibration and empirical relevance," MPRA Paper 59627, University Library of Munich, Germany.
    7. Melnikov, Alexander & Romaniuk, Yulia, 2006. "Evaluating the performance of Gompertz, Makeham and Lee-Carter mortality models for risk management with unit-linked contracts," Insurance: Mathematics and Economics, Elsevier, vol. 39(3), pages 310-329, December.
    8. Jorge Bravo, 2011. "Pricing Longevity Bonds Using Affine-Jump Diffusion Models," CEFAGE-UE Working Papers 2011_29, University of Evora, CEFAGE-UE (Portugal).
    9. Matheus R Grasselli & Sebastiano Silla, 2009. "A policyholder's utility indifference valuation model for the guaranteed annuity option," Papers 0908.3196, arXiv.org.
    10. Duffie, Darrell, 2005. "Credit risk modeling with affine processes," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2751-2802, November.
    11. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    12. Lee, Yung-Tsung & Wang, Chou-Wen & Huang, Hong-Chih, 2012. "On the valuation of reverse mortgages with regular tenure payments," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 430-441.
    13. Leunglung Chan & Eckhard Platen, 2016. "Pricing of long dated equity-linked life insurance contracts," Published Paper Series 2016-5, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    14. Marcus C. Christiansen, 2013. "Gaussian and Affine Approximation of Stochastic Diffusion Models for Interest and Mortality Rates," Risks, MDPI, vol. 1(3), pages 1-20, October.
    15. Shen, Yang & Siu, Tak Kuen, 2013. "Longevity bond pricing under stochastic interest rate and mortality with regime-switching," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 114-123.
    16. Alessandro Fiori Maccioni, 2011. "A Stochastic Model for the Analysis of Demographic Risk in Pay-As-You-Go Pension Funds," Papers 1106.5081, arXiv.org.
    17. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2005, January-A.
    18. João Nunes, 2011. "American options and callable bonds under stochastic interest rates and endogenous bankruptcy," Review of Derivatives Research, Springer, vol. 14(3), pages 283-332, October.
    19. Hong, Zhiwu & Niu, Linlin & Zhang, Chen, 2022. "Affine arbitrage-free yield net models with application to the euro debt crisis," Journal of Econometrics, Elsevier, vol. 230(1), pages 201-220.
    20. Zhou, Chunsheng, 2001. "The term structure of credit spreads with jump risk," Journal of Banking & Finance, Elsevier, vol. 25(11), pages 2015-2040, November.

    More about this item

    Keywords

    doubly stochastic processes (Cox processes); stochastic mortality; affine processes;
    All these keywords.

    JEL classification:

    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
    • J11 - Labor and Demographic Economics - - Demographic Economics - - - Demographic Trends, Macroeconomic Effects, and Forecasts

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:icr:wpmath:4-2005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Daniele Pennesi (email available below). General contact details of provider: https://edirc.repec.org/data/icerrit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.