(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstr
(This abstract was borrowed from another version of this item.)"> (This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstr
(This abstract was borrowed from another version of this item.)">
[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/hit/hituec/a423.html
   My bibliography  Save this paper

Upper Semicontinuous Extensions of Binary Relations

Author

Listed:
  • Walter Bossert
  • Yves Sprumont
  • Kotaro Suzumura
Abstract
Suzumura shows that a binary relation has a weak order extension if and only if it is consistent. However, consistency is demonstrably not sufficient to extend an upper semi-continuous binary relation to an upper semicontinuous weak order. Jaffray proves that any asymmetric (or reflexive), transitive and upper semicontinuous binary relation has an upper semicontinuous strict (or weak) order extension. We provide sufficient conditions for existence of upper semicontinuous extensions of consistence rather than transitive relations. For asymmetric relations, consistency and upper semicontinuity suffice. For more general relations, we prove one theorem using a further consistency property and another with an additional continuity requirement.
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstr
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Walter Bossert & Yves Sprumont & Kotaro Suzumura, 2002. "Upper Semicontinuous Extensions of Binary Relations," Discussion Paper Series a423, Institute of Economic Research, Hitotsubashi University.
  • Handle: RePEc:hit:hituec:a423
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kotaro Suzumura & Yongsheng Xu, 2003. "Recoverability of choice functions and binary relations: some duality results," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 21(1), pages 21-37, August.
    2. Duggan, John, 1999. "A General Extension Theorem for Binary Relations," Journal of Economic Theory, Elsevier, vol. 86(1), pages 1-16, May.
    3. Amartya Sen, 1969. "Quasi-Transitivity, Rational Choice and Collective Decisions," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 36(3), pages 381-393.
    4. Jaffray, Jean-Yves, 1975. "Semicontinuous extension of a partial order," Journal of Mathematical Economics, Elsevier, vol. 2(3), pages 395-406, December.
    5. Donaldson, David & Weymark, John A., 1998. "A Quasiordering Is the Intersection of Orderings," Journal of Economic Theory, Elsevier, vol. 78(2), pages 382-387, February.
    6. repec:bla:econom:v:43:y:1976:i:172:p:381-90 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suzumura, Kotaro & Xu, Yongsheng, 2003. "On constrained dual recoverability theorems," Mathematical Social Sciences, Elsevier, vol. 45(2), pages 143-154, April.
    2. Alcantud, José Carlos R. & Díaz, Susana, 2013. "Szpilrajn-type extensions of fuzzy quasiorderings," MPRA Paper 50547, University Library of Munich, Germany.
    3. Mikhail Freer & Cesar Martinelli, 2018. "A Functional Approach to Revealed Preference," Working Papers 1070, George Mason University, Interdisciplinary Center for Economic Science.
    4. T. Demuynck, 2006. "Existence of closed and complete extensions applied to convex, homothetic an monotonic orderings," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 06/407, Ghent University, Faculty of Economics and Business Administration.
    5. Athanasios Andrikopoulos, 2019. "On the extension of binary relations in economic and game theories," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 277-285, June.
    6. Mikhail Freer & Cesar Martinelli, 2018. "A Functional Approach to Revealed Preference," Working Papers 1070, George Mason University, Interdisciplinary Center for Economic Science.
    7. Andrikopoulos, Athanasios & Zacharias, Eleftherios, 2008. "General solutions for choice sets: The Generalized Optimal-Choice Axiom set," MPRA Paper 11645, University Library of Munich, Germany.
    8. Athanasios Andrikopoulos, 2017. "Generalizations of Szpilrajn's Theorem in economic and game theories," Papers 1708.04711, arXiv.org.
    9. T. Demuynck, 2009. "Common ordering extensions," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 09/593, Ghent University, Faculty of Economics and Business Administration.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Athanasios Andrikopoulos, 2011. "Characterization of the existence of semicontinuous weak utilities for binary relations," Theory and Decision, Springer, vol. 70(1), pages 13-26, January.
    2. Pivato, Marcus, 2009. "Social choice with approximate interpersonal comparisons of well-being," MPRA Paper 17060, University Library of Munich, Germany.
    3. Athanasios Andrikopoulos, 2017. "Generalizations of Szpilrajn's Theorem in economic and game theories," Papers 1708.04711, arXiv.org.
    4. Pivato, Marcus, 2010. "Approximate interpersonal comparisons of well-being," MPRA Paper 25224, University Library of Munich, Germany.
    5. T. Demuynck, 2009. "Common ordering extensions," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 09/593, Ghent University, Faculty of Economics and Business Administration.
    6. Ok, Efe A., 2002. "Utility Representation of an Incomplete Preference Relation," Journal of Economic Theory, Elsevier, vol. 104(2), pages 429-449, June.
    7. Herden, Gerhard & Pallack, Andreas, 2002. "On the continuous analogue of the Szpilrajn Theorem I," Mathematical Social Sciences, Elsevier, vol. 43(2), pages 115-134, March.
    8. Thomas Demuynck, 2009. "Absolute and Relative Time-Consistent Revealed Preferences," Theory and Decision, Springer, vol. 66(3), pages 283-299, March.
    9. BOSSERT, Walter & SUZUMURA, Kotaro, 2005. "Domain Closedness Conditions and Rational Choice," Cahiers de recherche 27-2005, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    10. José Alcantud, 2009. "Conditional ordering extensions," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 39(3), pages 495-503, June.
    11. Kaminski, B., 2007. "On quasi-orderings and multi-objective functions," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1591-1598, March.
    12. Peter Caradonna & Christopher P. Chambers, 2023. "A Note on Invariant Extensions of Preorders," Papers 2303.04522, arXiv.org.
    13. Athanasios Andrikopoulos, 2019. "On the extension of binary relations in economic and game theories," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 277-285, June.
    14. Alcantud, José Carlos R. & Díaz, Susana, 2013. "Szpilrajn-type extensions of fuzzy quasiorderings," MPRA Paper 50547, University Library of Munich, Germany.
    15. Peter Caradonna & Christopher P. Chambers, 2024. "Revealed Invariant Preference," Papers 2408.04573, arXiv.org.
    16. Suzumura, Kotaro & Xu, Yongsheng, 2003. "On constrained dual recoverability theorems," Mathematical Social Sciences, Elsevier, vol. 45(2), pages 143-154, April.
    17. Knoblauch, Vicki, 2013. "A simple voting scheme generates all binary relations on finite sets," Journal of Mathematical Economics, Elsevier, vol. 49(3), pages 230-233.
    18. Raphaël Giraud, 2004. "Reference-dependent preferences: rationality, mechanism and welfare implications," Cahiers de la Maison des Sciences Economiques v04087, Université Panthéon-Sorbonne (Paris 1).
    19. Demuynck, Thomas, 2009. "A general extension result with applications to convexity, homotheticity and monotonicity," Mathematical Social Sciences, Elsevier, vol. 57(1), pages 96-109, January.
    20. Vicki Knoblauch, 2006. "Continuously Representable Paretian Quasi-Orders," Theory and Decision, Springer, vol. 60(1), pages 1-16, February.

    More about this item

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hit:hituec:a423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Hiromichi Miyake (email available below). General contact details of provider: https://edirc.repec.org/data/iehitjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.