[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/hhs/rbnkwp/0150.html
   My bibliography  Save this paper

Bayes Estimators of the Cointegration Space

Author

Listed:
  • Villani, Mattias

    (Research Department, Central Bank of Sweden)

Abstract
A neglected aspect of the otherwise fairly well developed Bayesian analysis of cointegration is the point estimation of the cointegration space. It is pointed out here that, due to the well known non-identification of the cointegration vectors, the parameter space is not an inner product space and conventional Bayes estimators therefore stand without their usual decision theoretic foundation. We present a Bayes estimator of the cointegration space which takes the curved geometry of the parameter space into account. Contrary to many of the Bayes estimators used in the literature, this estimator is invariant to the ordering of the time series. A dimension invariant overall measure of cointegration space uncertainty is also proposed. A small simulation study shows that the Bayes estimator compares favorably to the maximum likelihood estimator.

Suggested Citation

  • Villani, Mattias, 2003. "Bayes Estimators of the Cointegration Space," Working Paper Series 150, Sveriges Riksbank (Central Bank of Sweden).
  • Handle: RePEc:hhs:rbnkwp:0150
    as

    Download full text from publisher

    File URL: http://www.riksbank.com/upload/8104/WP_150.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Strachan, Rodney W, 2003. "Valid Bayesian Estimation of the Cointegrating Error Correction Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 185-195, January.
    2. Kleibergen, Frank & van Dijk, Herman K., 1994. "On the Shape of the Likelihood/Posterior in Cointegration Models," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 514-551, August.
    3. BAUWENS, Luc & LUBRANO , Michel, 1994. "Identification Restrictions and Posterior Densities in Cointegrated Gaussian VAR Systems," LIDAM Discussion Papers CORE 1994018, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Kleibergen, Frank & Paap, Richard, 2002. "Priors, posteriors and bayes factors for a Bayesian analysis of cointegration," Journal of Econometrics, Elsevier, vol. 111(2), pages 223-249, December.
    5. Kleibergen, Frank & van Dijk, Herman K., 1998. "Bayesian Simultaneous Equations Analysis Using Reduced Rank Structures," Econometric Theory, Cambridge University Press, vol. 14(6), pages 701-743, December.
    6. Kloek, Tuen & van Dijk, Herman K, 1978. "Bayesian Estimates of Equation System Parameters: An Application of Integration by Monte Carlo," Econometrica, Econometric Society, vol. 46(1), pages 1-19, January.
    7. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    8. Phillips, P C B, 1991. "Optimal Inference in Cointegrated Systems," Econometrica, Econometric Society, vol. 59(2), pages 283-306, March.
    9. Geweke, John, 1996. "Bayesian reduced rank regression in econometrics," Journal of Econometrics, Elsevier, vol. 75(1), pages 121-146, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Villani, Mattias, 2006. "Bayesian point estimation of the cointegration space," Journal of Econometrics, Elsevier, vol. 134(2), pages 645-664, October.
    2. Gary Koop & Rodney Strachan & Herman van Dijk & Mattias Villani, 2004. "Bayesian Approaches to Cointegration," Discussion Papers in Economics 04/27, Division of Economics, School of Business, University of Leicester.
    3. Villani, Mattias, 2005. "Bayesian Inference of General Linear Restrictions on the Cointegration Space," Working Paper Series 189, Sveriges Riksbank (Central Bank of Sweden).
    4. Kleibergen, Frank & Paap, Richard, 2002. "Priors, posteriors and bayes factors for a Bayesian analysis of cointegration," Journal of Econometrics, Elsevier, vol. 111(2), pages 223-249, December.
    5. Gary Koop & Roberto Leon-Gonzalez & Rodney Strachan, 2008. "Bayesian inference in a cointegrating panel data model," Advances in Econometrics, in: Bayesian Econometrics, pages 433-469, Emerald Group Publishing Limited.
    6. Rodney Strachan & Herman K. van Dijk, "undated". "Bayesian Model Averaging in Vector Autoregressive Processes with an Investigation of Stability of the US Great Ratios and Risk of a Liquidity Trap in the USA, UK and Japan," MRG Discussion Paper Series 1407, School of Economics, University of Queensland, Australia.
    7. Strachan, Rodney W. & Inder, Brett, 2004. "Bayesian analysis of the error correction model," Journal of Econometrics, Elsevier, vol. 123(2), pages 307-325, December.
    8. Andrea Silvestrini, 2010. "Testing fiscal sustainability in Poland: a Bayesian analysis of cointegration," Empirical Economics, Springer, vol. 39(1), pages 241-274, August.
    9. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    10. Helmut Luetkepohl, 2007. "Econometric Analysis with Vector Autoregressive Models," Economics Working Papers ECO2007/11, European University Institute.
    11. Gary Koop & Roberto León-González & Rodney W. Strachan, 2010. "Efficient Posterior Simulation for Cointegrated Models with Priors on the Cointegration Space," Econometric Reviews, Taylor & Francis Journals, vol. 29(2), pages 224-242, April.
    12. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2019. "Priors for the Long Run," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 565-580, April.
    13. Hoogerheide, Lennart & Kleibergen, Frank & van Dijk, Herman K., 2007. "Natural conjugate priors for the instrumental variables regression model applied to the Angrist-Krueger data," Journal of Econometrics, Elsevier, vol. 138(1), pages 63-103, May.
    14. Rodney W. Strachan & Herman K. van Dijk, 2014. "Divergent Priors and Well Behaved Bayes Factors," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 6(1), pages 1-31, March.
    15. Koop, Gary & Leon-Gonzalez, Roberto & Strachan, Rodney W., 2011. "Bayesian inference in a time varying cointegration model," Journal of Econometrics, Elsevier, vol. 165(2), pages 210-220.
    16. Prüser, Jan, 2023. "Data-based priors for vector error correction models," International Journal of Forecasting, Elsevier, vol. 39(1), pages 209-227.
    17. Warne, Anders, 2006. "Bayesian inference in cointegrated VAR models: with applications to the demand for euro area M3," Working Paper Series 692, European Central Bank.
    18. Gael Martin, 2001. "Bayesian Analysis Of A Fractional Cointegration Model," Econometric Reviews, Taylor & Francis Journals, vol. 20(2), pages 217-234.
    19. Carriero, Andrea & Kapetanios, George & Marcellino, Massimiliano, 2016. "Structural analysis with Multivariate Autoregressive Index models," Journal of Econometrics, Elsevier, vol. 192(2), pages 332-348.
    20. Nalan Basturk & Lennart Hoogerheide & Herman K. van Dijk, 2017. "Bayesian Analysis of Boundary and Near-Boundary Evidence in Econometric Models with Reduced Rank," Tinbergen Institute Discussion Papers 17-058/III, Tinbergen Institute.

    More about this item

    Keywords

    Bayesian inference; Cointegration analysis; Estimation; Grassman manifold; Subspaces.;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:rbnkwp:0150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lena Löfgren (email available below). General contact details of provider: https://edirc.repec.org/data/rbgovse.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.