[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/hhs/ctswps/2018_011.html
   My bibliography  Save this paper

Effects of driverless vehicles: A review of simulations

Author

Listed:
  • Pernestål Brenden , Anna

    (CTS - Centre for Transport Studies Stockholm (KTH and VTI))

  • Kristoffersson , Ida

    (VTI)

Abstract
The development of driverless vehicles is fast, and the technology has the potential to significantly affect the transport system, society and environment. However, there are still many open questions regarding what this development will look like and there are several counteracting forces. This paper addresses the effects of driverless vehicles by performing a literature review of twenty papers that use simulation to model effects of driverless vehicles. By combing and analysing the results from these simulation studies, an overall picture of the effects of driverless vehicles is presented. The paper shows that focus in existing literature has been on effects of driverless taxi applications in urban areas. Some parameters, such as trip cost and waiting time, show small variations between the reviewed papers. Other parameters, such as vehicle kilometres travelled (VKT), show larger variations and depend heavily on the assumptions concerning value of time and level of sharing. In general, increases in VKT are predicted for most applications. Ride sharing has the potential to reduce VKT, and thereby energy consumption and congestion, but the analysis indicates that a sufficient level of ride sharing to reduce VKT will not be achieved without incentives or regulations. Furthermore, the VKT of driverless vehicles is unevenly distributed from a time and space perspective, with larger increases in VKT during peak hours than in off-peak, and in the suburbs compared to city centres. The reviewed papers provide a first prediction of factors such as waiting time, VKT and trip cost, in particular for urban areas and for schemes where there is one service provider present. To get a deeper understanding of the effects of driverless vehicles, aspects such as local spatial considerations, e.g. at pick-up stations, and more complex schemes with competition between service providers should be studied. Furthermore, there is a need for sensitivity analyses regarding travel demand.

Suggested Citation

  • Pernestål Brenden , Anna & Kristoffersson , Ida, 2018. "Effects of driverless vehicles: A review of simulations," Working papers in Transport Economics 2018:11, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
  • Handle: RePEc:hhs:ctswps:2018_011
    as

    Download full text from publisher

    File URL: https://www.cts.kth.se/polopoly_fs/1.827829!/CTS2018-11.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Long T. Truong & Chris Gruyter & Graham Currie & Alexa Delbosc, 2017. "Estimating the trip generation impacts of autonomous vehicles on car travel in Victoria, Australia," Transportation, Springer, vol. 44(6), pages 1279-1292, November.
    2. Bert Van Wee & David Banister, 2016. "How to Write a Literature Review Paper?," Transport Reviews, Taylor & Francis Journals, vol. 36(2), pages 278-288, March.
    3. Chen, T. Donna & Kockelman, Kara M. & Hanna, Josiah P., 2016. "Operations of a shared, autonomous, electric vehicle fleet: Implications of vehicle & charging infrastructure decisions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 243-254.
    4. Jeffery B. Greenblatt & Samveg Saxena, 2015. "Autonomous taxis could greatly reduce greenhouse-gas emissions of US light-duty vehicles," Nature Climate Change, Nature, vol. 5(9), pages 860-863, September.
    5. Ye, Lanhang & Yamamoto, Toshiyuki, 2018. "Modeling connected and autonomous vehicles in heterogeneous traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 269-277.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Almlöf, Erik & Nybacka, Mikael & Pernestål, Anna & Jenelius, Erik, 2022. "Will leisure trips be more affected than work trips by autonomous technology? Modelling self-driving public transport and cars in Stockholm, Sweden," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 1-19.
    2. Martin Adler & Stefanie Peer & Tanja Sinozic, 2019. "Autonomous, Connected, Electric Shared vehicles (ACES) and public finance: an explorative analysis," Tinbergen Institute Discussion Papers 19-005/VIII, Tinbergen Institute.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moneim Massar & Imran Reza & Syed Masiur Rahman & Sheikh Muhammad Habib Abdullah & Arshad Jamal & Fahad Saleh Al-Ismail, 2021. "Impacts of Autonomous Vehicles on Greenhouse Gas Emissions—Positive or Negative?," IJERPH, MDPI, vol. 18(11), pages 1-23, May.
    2. Shaheen, Susan PhD & Cohen, Adam & Farrar, Emily, 2019. "Carsharing's Impact and Future," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt2f5896tp, Institute of Transportation Studies, UC Berkeley.
    3. Becker, Henrik & Becker, Felix & Abe, Ryosuke & Bekhor, Shlomo & Belgiawan, Prawira F. & Compostella, Junia & Frazzoli, Emilio & Fulton, Lewis M. & Guggisberg Bicudo, Davi & Murthy Gurumurthy, Krishna, 2020. "Impact of vehicle automation and electric propulsion on production costs for mobility services worldwide," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 105-126.
    4. Guo, Yuntao & Souders, Dustin & Labi, Samuel & Peeta, Srinivas & Benedyk, Irina & Li, Yujie, 2021. "Paving the way for autonomous Vehicles: Understanding autonomous vehicle adoption and vehicle fuel choice under user heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 364-398.
    5. Nadafianshahamabadi, Razieh & Tayarani, Mohammad & Rowangould, Gregory, 2021. "A closer look at urban development under the emergence of autonomous vehicles: Traffic, land use and air quality impacts," Journal of Transport Geography, Elsevier, vol. 94(C).
    6. Nourinejad, Mehdi & Bahrami, Sina & Roorda, Matthew J., 2018. "Designing parking facilities for autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 110-127.
    7. Cilio, Luca & Babacan, Oytun, 2021. "Allocation optimisation of rapid charging stations in large urban areas to support fully electric taxi fleets," Applied Energy, Elsevier, vol. 295(C).
    8. Brown, Austin L. & Sperling, Daniel & Austin, Bernadette & DeShazo, JR & Fulton, Lew & Lipman, Timothy & Murphy, Colin W & Saphores, Jean Daniel & Tal, Gil & Abrams, Carolyn & Chakraborty, Debapriya &, 2021. "Driving California’s Transportation Emissions to Zero," Institute of Transportation Studies, Working Paper Series qt3np3p2t0, Institute of Transportation Studies, UC Davis.
    9. Marletto, Gerardo, 2019. "Who will drive the transition to self-driving? A socio-technical analysis of the future impact of automated vehicles," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 221-234.
    10. Gu, Yewen & Goez, Julio C. & Mario, Guajardo & Wallace, Stein W., 2019. "Autonomous vessels: State of the art and potential opportunities in logistics," Discussion Papers 2019/6, Norwegian School of Economics, Department of Business and Management Science.
    11. Kassens-Noor, Eva & Dake, Dana & Decaminada, Travis & Kotval-K, Zeenat & Qu, Teresa & Wilson, Mark & Pentland, Brian, 2020. "Sociomobility of the 21st century: Autonomous vehicles, planning, and the future city," Transport Policy, Elsevier, vol. 99(C), pages 329-335.
    12. Brown, Austin L. & Fleming, Kelly L. & Lipman, Timothy & Fulton, Lew & Saphores, Jean Daniel & Tal, Gil & Murphy, Colin W & Shaheen, Susan & Austin, Bernadette & Garcia Sanchez, Juan Carlos & Martin, , 2020. "Carbon Neutrality Study 1:Driving California’s Transportation Emissions to Zero," Institute of Transportation Studies, Working Paper Series qt5zb1238j, Institute of Transportation Studies, UC Davis.
    13. Wu, Jingwen & Liao, Hua & Wang, Jin-Wei, 2020. "Analysis of consumer attitudes towards autonomous, connected, and electric vehicles: A survey in China," Research in Transportation Economics, Elsevier, vol. 80(C).
    14. Ahmed, Tanjeeb & Hyland, Michael & Sarma, Navjyoth J.S. & Mitra, Suman & Ghaffar, Arash, 2020. "Quantifying the employment accessibility benefits of shared automated vehicle mobility services: Consumer welfare approach using logsums," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 221-247.
    15. Bin Yu & Miyi Wu & Shuyi Wang & Wen Zhou, 2019. "Traffic Simulation Analysis on Running Speed in a Connected Vehicles Environment," IJERPH, MDPI, vol. 16(22), pages 1-15, November.
    16. Iacobucci, Riccardo & McLellan, Benjamin & Tezuka, Tetsuo, 2018. "Modeling shared autonomous electric vehicles: Potential for transport and power grid integration," Energy, Elsevier, vol. 158(C), pages 148-163.
    17. Scott Kaplan & Ben Gordon & Feras El Zarwi & Joan L. Walker & David Zilberman, 2019. "The Future of Autonomous Vehicles: Lessons from the Literature on Technology Adoption," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 41(4), pages 583-597, December.
    18. Morteza Taiebat & Austin L. Brown & Hannah R. Safford & Shen Qu & Ming Xu, 2019. "A Review on Energy, Environmental, and Sustainability Implications of Connected and Automated Vehicles," Papers 1901.10581, arXiv.org, revised Feb 2019.
    19. Peng, Jiali & Shangguan, Wei & Peng, Cong & Chai, Linguo, 2024. "Uncertainty modeling of connected and automated vehicle penetration rate under mixed traffic environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
    20. Yavas, Volkan & Yavaş Tez, Özge, 2023. "Consumer intention over upcoming utopia: Urban air mobility," Journal of Air Transport Management, Elsevier, vol. 107(C).

    More about this item

    Keywords

    Driverless vehicle; Automated vehicle; Autonomous taxi; Traffic simulation; Societal effects;
    All these keywords.

    JEL classification:

    • R40 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - General
    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:ctswps:2018_011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CTS (email available below). General contact details of provider: http://www.cts.kth.se/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.