[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-03680156.html
   My bibliography  Save this paper

Cost allocation in energy distribution networks

Author

Listed:
  • David Lowing

    (GATE Lyon Saint-Étienne - Groupe d'Analyse et de Théorie Economique Lyon - Saint-Etienne - UL2 - Université Lumière - Lyon 2 - UJM - Université Jean Monnet - Saint-Étienne - EM - EMLyon Business School - CNRS - Centre National de la Recherche Scientifique)

Abstract
This paper presents a cost allocation problem arising from energy distribution and proposes cost allocation rules that depend on the distribution network and consumer demands. To determine relevant rules, we adopt a normative approach and compare two principles: (i) the connection principle and (ii) the uniformity principle. The Connection rule is proposed in accordance with (i), while the Uniform rule is developed in line with (ii). However, (i) and (ii) are incompatible. To make a trade-off between them, we propose a family of Mixed rules. Each rule is axiomatically characterized. Then, we demonstrate that the Connection rule coincides with the multi-choice Shapley value of a specific multi-choice game derived from the original problem. Moreover, the Connection rule is in the Core of this game. Similarly, we show that the Uniform rule and the Mixed rules coincide with other solution concepts from multi-choice games.

Suggested Citation

  • David Lowing, 2023. "Cost allocation in energy distribution networks," Working Papers hal-03680156, HAL.
  • Handle: RePEc:hal:wpaper:hal-03680156
    Note: View the original document on HAL open archive server: https://hal.science/hal-03680156v3
    as

    Download full text from publisher

    File URL: https://hal.science/hal-03680156v3/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Michel Grabisch & Lijue Xie, 2007. "A new approach to the core and Weber set of multichoice games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(3), pages 491-512, December.
    2. David Lowing & Kevin Techer, 2022. "Marginalism, egalitarianism and efficiency in multi-choice games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 59(4), pages 815-861, November.
    3. Gilles, Robert P & Owen, Guillermo & van den Brink, Rene, 1992. "Games with Permission Structures: The Conjunctive Approach," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(3), pages 277-293.
    4. Csercsik, Dávid & Hubert, Franz & Sziklai, Balázs R. & Kóczy, László Á., 2019. "Modeling transfer profits as externalities in a cooperative game-theoretic model of natural gas networks," Energy Economics, Elsevier, vol. 80(C), pages 355-365.
    5. Hsiao, Chih-Ru & Raghavan, T E S, 1992. "Monotonicity and Dummy Free Property for Multi-choice Cooperative Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 21(3), pages 301-312.
    6. Moulin, Herve & Shenker, Scott, 1992. "Serial Cost Sharing," Econometrica, Econometric Society, vol. 60(5), pages 1009-1037, September.
    7. van den Brink, Rene & Gilles, Robert P., 1996. "Axiomatizations of the Conjunctive Permission Value for Games with Permission Structures," Games and Economic Behavior, Elsevier, vol. 12(1), pages 113-126, January.
    8. Massol, Olivier & Tchung-Ming, Stéphane, 2010. "Cooperation among liquefied natural gas suppliers: Is rationalization the sole objective?," Energy Economics, Elsevier, vol. 32(4), pages 933-947, July.
    9. van den Brink, René & He, Simin & Huang, Jia-Ping, 2018. "Polluted river problems and games with a permission structure," Games and Economic Behavior, Elsevier, vol. 108(C), pages 182-205.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lowing, David, 2024. "Cost allocation in energy distribution networks," Journal of Mathematical Economics, Elsevier, vol. 110(C).
    2. David Lowing, 2023. "Allocation rules for multi-choice games with a permission tree structure," Annals of Operations Research, Springer, vol. 320(1), pages 261-291, January.
    3. Lowing, David & Techer, Kevin, 2022. "Priority relations and cooperation with multiple activity levels," Journal of Mathematical Economics, Elsevier, vol. 102(C).
    4. Juarez, Ruben & Ko, Chiu Yu & Xue, Jingyi, 2018. "Sharing sequential values in a network," Journal of Economic Theory, Elsevier, vol. 177(C), pages 734-779.
    5. Hougaard, Jens Leth & Moreno-Ternero, Juan D. & Tvede, Mich & Østerdal, Lars Peter, 2017. "Sharing the proceeds from a hierarchical venture," Games and Economic Behavior, Elsevier, vol. 102(C), pages 98-110.
    6. Sylvain Béal & Adriana Navarro-Ramos & Eric Rémila & Philippe Solal, 2023. "Sharing the cost of hazardous transportation networks and the Priority Shapley value," Working Papers hal-04222245, HAL.
    7. Hao Wu & Rene van den Brink & Arantza Estevez-Fernandez, 2022. "The locally partial permission value for games with a permission structure," Tinbergen Institute Discussion Papers 22-037/II, Tinbergen Institute.
    8. René Brink, 2017. "Games with a permission structure - A survey on generalizations and applications," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-33, April.
    9. David Lowing & Makoto Yokoo, 2023. "Sharing values for multi-choice games: an axiomatic approach," Working Papers hal-04018735, HAL.
    10. David Lowing & Kevin Techer, 2022. "Marginalism, egalitarianism and efficiency in multi-choice games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 59(4), pages 815-861, November.
    11. Wu, Hao & van den Brink, René & Estévez-Fernández, Arantza, 2024. "Highway toll allocation," Transportation Research Part B: Methodological, Elsevier, vol. 180(C).
    12. Encarnacion Algaba & Rene van den Brink, 2021. "Networks, Communication and Hierarchy: Applications to Cooperative Games," Tinbergen Institute Discussion Papers 21-019/IV, Tinbergen Institute.
    13. David Lowing & Kevin Techer, 2021. "Marginalism, Egalitarianism and E ciency in Multi-Choice Games," Working Papers halshs-03334056, HAL.
    14. Hao Wu & Rene van den Brink & Arantza Estevez-Fernandez, 2022. "Highway toll allocation," Tinbergen Institute Discussion Papers 22-036/II, Tinbergen Institute.
    15. Slikker, M. & Gilles, R.P. & Norde, H.W. & Tijs, S.H., 2000. "Directed Communication Networks," Discussion Paper 2000-84, Tilburg University, Center for Economic Research.
    16. Sylvain Béal & Sylvain Ferrières & Philippe Solal, 2022. "The priority value for cooperative games with a priority structure," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(2), pages 431-450, June.
    17. René Brink & Ilya Katsev & Gerard Laan, 2011. "Axiomatizations of two types of Shapley values for games on union closed systems," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 47(1), pages 175-188, May.
    18. René Brink & Frank Steffen, 2012. "Axiomatizations of a positional power score and measure for hierarchies," Public Choice, Springer, vol. 151(3), pages 757-787, June.
    19. René van den Brink & Ilya Katsev & Gerard van der Laan, 2008. "An Algorithm for Computing the Nucleolus of Disjunctive Additive Games with An Acyclic Permission Structure," Tinbergen Institute Discussion Papers 08-104/1, Tinbergen Institute.
    20. C. Manuel & D. Martín, 2021. "A value for communication situations with players having different bargaining abilities," Annals of Operations Research, Springer, vol. 301(1), pages 161-182, June.

    More about this item

    Keywords

    Energy distribution network; Cost allocation rules; Axiomatization; Multi-choice games;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-03680156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.