[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03898912.html
   My bibliography  Save this paper

Multiple curve Lévy forward price model allowing for negative interest rates

Author

Listed:
  • Ernst Eberlein
  • Christoph Gerhart
  • Zorana Grbac

    (UPCité - Université Paris Cité, LPSM (UMR_8001) - Laboratoire de Probabilités, Statistique et Modélisation - SU - Sorbonne Université - CNRS - Centre National de la Recherche Scientifique - UPCité - Université Paris Cité)

Abstract
In this paper we develop a framework for discretely compounding interest rates which is based on the forward price process approach. This approach has a number of advantages, in particular in the current market environment. Compared to the classical as well as the Lévy Libor market model, it allows in a natural way for negative interest rates and has superb calibration properties even in the presence of extremely low rates. Moreover, the measure changes along the tenor structure are simplified significantly. These properties make it an excellent base for a post-crisis multiple curve setup. Two variants for multiple curve constructions based on the multiplicative spreads are discussed. Time-inhomogeneous Lévy processes are used as driving processes. An explicit formula for the valuation of caps is derived using Fourier transform techniques. Relying on the valuation formula, we calibrate the two model variants to market data.

Suggested Citation

  • Ernst Eberlein & Christoph Gerhart & Zorana Grbac, 2019. "Multiple curve Lévy forward price model allowing for negative interest rates," Post-Print hal-03898912, HAL.
  • Handle: RePEc:hal:journl:hal-03898912
    DOI: 10.1111/mafi.12210
    Note: View the original document on HAL open archive server: https://hal.science/hal-03898912v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-03898912v1/document
    Download Restriction: no

    File URL: https://libkey.io/10.1111/mafi.12210?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ernst Eberlein & Sebastian Raible, 1999. "Term Structure Models Driven by General Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 9(1), pages 31-53, January.
    2. Zorana Grbac & Antonis Papapantoleon & John Schoenmakers & David Skovmand, 2014. "Affine LIBOR models with multiple curves: theory, examples and calibration," Papers 1405.2450, arXiv.org, revised Aug 2015.
    3. Masaaki Kijima & Keiichi Tanaka & Tony Wong, 2009. "A multi-quality model of interest rates," Quantitative Finance, Taylor & Francis Journals, vol. 9(2), pages 133-145.
    4. Andrea Macrina & Obeid Mahomed, 2018. "Consistent Valuation Across Curves Using Pricing Kernels," Papers 1801.04994, arXiv.org, revised Feb 2018.
    5. Christa Cuchiero & Claudio Fontana & Alessandro Gnoatto, 2016. "A general HJM framework for multiple yield curve modelling," Finance and Stochastics, Springer, vol. 20(2), pages 267-320, April.
    6. Christa Cuchiero & Claudio Fontana & Alessandro Gnoatto, 2019. "Affine multiple yield curve models," Mathematical Finance, Wiley Blackwell, vol. 29(2), pages 568-611, April.
    7. Ernst Eberlein & Kathrin Glau & Antonis Papapantoleon, 2010. "Analysis of Fourier Transform Valuation Formulas and Applications," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(3), pages 211-240.
    8. Ernst Eberlein & Jean Jacod & Sebastian Raible, 2005. "Lévy term structure models: No-arbitrage and completeness," Finance and Stochastics, Springer, vol. 9(1), pages 67-88, January.
    9. Ernst Eberlein & Christoph Gerhart, 2018. "A multiple-curve Lévy forward rate model in a two-price economy," Quantitative Finance, Taylor & Francis Journals, vol. 18(4), pages 537-561, April.
    10. Ernst Eberlein & Fehmi Özkan, 2005. "The Lévy LIBOR model," Finance and Stochastics, Springer, vol. 9(3), pages 327-348, July.
    11. Andrea Macrina & Obeid Mahomed, 2018. "Consistent Valuation Across Curves Using Pricing Kernels," Risks, MDPI, vol. 6(1), pages 1-39, March.
    12. The Anh Nguyen & Frank Thomas Seifried, 2015. "The Multi-Curve Potential Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(07), pages 1-32, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ernst Eberlein & Christoph Gerhart & Zorana Grbac, 2018. "Multiple curve L\'evy forward price model allowing for negative interest rates," Papers 1805.02605, arXiv.org.
    2. Claudio Fontana & Zorana Grbac & Sandrine Gümbel & Thorsten Schmidt, 2020. "Term structure modelling for multiple curves with stochastic discontinuities," Finance and Stochastics, Springer, vol. 24(2), pages 465-511, April.
    3. Alfeus, Mesias & Grasselli, Martino & Schlögl, Erik, 2020. "A consistent stochastic model of the term structure of interest rates for multiple tenors," Journal of Economic Dynamics and Control, Elsevier, vol. 114(C).
    4. repec:uts:finphd:41 is not listed on IDEAS
    5. Yangfan Zhong & Yanhui Mi, 2018. "Pricing in-arrears caps and ratchet caps under LIBOR market model with multiplicative basis," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-31, September.
    6. Markus Hess, 2020. "A pure-jump mean-reverting short rate model," Papers 2006.14814, arXiv.org.
    7. Markus Hess, 2019. "An Arithmetic Pure-Jump Multi-Curve Interest Rate Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(08), pages 1-30, December.
    8. Christa Cuchiero & Claudio Fontana & Alessandro Gnoatto, 2019. "Affine multiple yield curve models," Mathematical Finance, Wiley Blackwell, vol. 29(2), pages 568-611, April.
    9. Yangfan Zhong, 2018. "LIBOR market model with multiplicative basis," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 1-38, June.
    10. Henrik Dam & Andrea Macrina & David Skovmand & David Sloth, 2018. "Rational Models for Inflation-Linked Derivatives," Papers 1801.08804, arXiv.org, revised Jul 2020.
    11. Claudio Fontana & Zorana Grbac & Sandrine Gümbel & Thorsten Schmidt, 2020. "Term structure modelling for multiple curves with stochastic discontinuities," Post-Print hal-03898927, HAL.
    12. Sandrine Gumbel & Thorsten Schmidt, 2020. "Machine learning for multiple yield curve markets: fast calibration in the Gaussian affine framework," Papers 2004.07736, arXiv.org, revised Apr 2020.
    13. Claudio Fontana & Zorana Grbac & Sandrine Gumbel & Thorsten Schmidt, 2018. "Term structure modeling for multiple curves with stochastic discontinuities," Papers 1810.09882, arXiv.org, revised Dec 2019.
    14. Alessandro Gnoatto & Nicole Seiffert, 2020. "Cross Currency Valuation and Hedging in the Multiple Curve Framework," Working Papers 03/2020, University of Verona, Department of Economics.
    15. Andrea Macrina & Obeid Mahomed, 2018. "Consistent Valuation Across Curves Using Pricing Kernels," Papers 1801.04994, arXiv.org, revised Feb 2018.
    16. Claudio Fontana & Giacomo Lanaro & Agatha Murgoci, 2024. "The geometry of multi-curve interest rate models," Papers 2401.11619, arXiv.org, revised Jun 2024.
    17. Nikolaos Karouzakis & John Hatgioannides & Kostas Andriosopoulos, 2018. "Convexity adjustment for constant maturity swaps in a multi-curve framework," Annals of Operations Research, Springer, vol. 266(1), pages 159-181, July.
    18. Ernst Eberlein & Wolfgang Kluge & Antonis Papapantoleon, 2006. "Symmetries In Lévy Term Structure Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 9(06), pages 967-986.
    19. Sandrine Gümbel & Thorsten Schmidt, 2020. "Machine Learning for Multiple Yield Curve Markets: Fast Calibration in the Gaussian Affine Framework," Risks, MDPI, vol. 8(2), pages 1-18, May.
    20. Wolfgang Kluge & Antonis Papapantoleon, 2009. "On the valuation of compositions in Levy term structure models," Quantitative Finance, Taylor & Francis Journals, vol. 9(8), pages 951-959.
    21. Mesias Alfeus, 2019. "Stochastic Modelling of New Phenomena in Financial Markets," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2019, January-A.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03898912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.