[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01974493.html
   My bibliography  Save this paper

Reducing emissions of the fast growing Vietnamese coal sector: the chances offered by biomass co-firing

Author

Listed:
  • An Ha Truong

    (CleanED - Clean Energy and Sustainable Development Lab - USTH - University of Science and Technology of Hanoi)

  • Piera Patrizio
  • Sylvain Leduc

    (IIASA - International Institute for Applied Systems Analysis)

  • Florian Kraxner

    (IIASA - International Institute for Applied Systems Analysis)

  • Minh Ha-Duong

    (CIRED - centre international de recherche sur l'environnement et le développement - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - EHESS - École des hautes études en sciences sociales - AgroParisTech - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique)

Abstract
Vietnam's Power Development Plan 7A authorized many new coal power plants projects, implying an increase of greenhouse gases emissions from 90 MtCO2eq/year today to 360 MtCO2eq/year in 2030. How could co-firing technology-that is the partial substitution of coal by biomass-contributes to mitigate that problem? In this study, we assess the costs and potentials of co-firing rice residues in present and planned coal power plants in Vietnam using a spatially explicit optimization model: BeWhere, adapted as recursive annual dynamic. We found that, the cost of CO2 emissions is the key parameter determining at what level the technology is used. A cost of CO2 emissions of 8 $/tCO2 mobilizes the maximum technical potential of the rice straw and husk domestic resource, with an annual emission reduction of 28 MtCO2eq/year by 2030. At this level, biomass co-firing contributes to an 8% emission reduction in the coal power sector with the abatement cost of 137 Million USD.

Suggested Citation

  • An Ha Truong & Piera Patrizio & Sylvain Leduc & Florian Kraxner & Minh Ha-Duong, 2019. "Reducing emissions of the fast growing Vietnamese coal sector: the chances offered by biomass co-firing," Post-Print hal-01974493, HAL.
  • Handle: RePEc:hal:journl:hal-01974493
    DOI: 10.1016/j.jclepro.2019.01.065
    Note: View the original document on HAL open archive server: https://enpc.hal.science/hal-01974493
    as

    Download full text from publisher

    File URL: https://enpc.hal.science/hal-01974493/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jclepro.2019.01.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dzikuć, Maciej & Piwowar, Arkadiusz, 2016. "Ecological and economic aspects of electric energy production using the biomass co-firing method: The case of Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 856-862.
    2. Roni, Mohammad S. & Chowdhury, Sudipta & Mamun, Saleh & Marufuzzaman, Mohammad & Lein, William & Johnson, Samuel, 2017. "Biomass co-firing technology with policies, challenges, and opportunities: A global review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1089-1101.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maciej Dzikuć & Arkadiusz Piwowar & Szymon Szufa & Janusz Adamczyk & Maria Dzikuć, 2021. "Potential and Scenarios of Variants of Thermo-Modernization of Single-Family Houses: An Example of the Lubuskie Voivodeship," Energies, MDPI, vol. 14(1), pages 1-11, January.
    2. Maciej Dzikuć & Joanna Wyrobek & Łukasz Popławski, 2021. "Economic Determinants of Low-Carbon Development in the Visegrad Group Countries," Energies, MDPI, vol. 14(13), pages 1-12, June.
    3. Aviso, K.B. & Sy, C.L. & Tan, R.R. & Ubando, A.T., 2020. "Fuzzy optimization of carbon management networks based on direct and indirect biomass co-firing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    4. Truong, An Ha & Ha-Duong, Minh & Tran, Hoang Anh, 2022. "Economics of co-firing rice straw in coal power plants in Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    5. Minh Ha-Duong & an Ha Truong & Hoang Anh Tran, 2020. "Biomass co-firing and renewable portfolio standard scenarios to 2030 [Đồng Đốt Sinh Khối Và Các Kịch Bản Tiêu Chuẩn Tỉ Lệ Năng Lượng Tái Tạo Đến 2030]," Working Papers hal-03059625, HAL.
    6. Nong, Duy & Wang, Can & Al-Amin, Abul Quasem, 2020. "A critical review of energy resources, policies and scientific studies towards a cleaner and more sustainable economy in Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    7. Maciej Dzikuć & Piotr Kuryło & Rafał Dudziak & Szymon Szufa & Maria Dzikuć & Karolina Godzisz, 2020. "Selected Aspects of Combustion Optimization of Coal in Power Plants," Energies, MDPI, vol. 13(9), pages 1-15, May.
    8. Nong, Duy & Nguyen, Duong Binh & Nguyen, Trung H. & Wang, Can & Siriwardana, Mahinda, 2020. "A stronger energy strategy for a new era of economic development in Vietnam: A quantitative assessment," Energy Policy, Elsevier, vol. 144(C).
    9. Joachim Kozioł & Joanna Czubala & Michał Kozioł & Piotr Ziembicki, 2020. "Generalized Energy and Ecological Characteristics of the Process of Co-Firing Coal with Biomass in a Steam Boiler," Energies, MDPI, vol. 13(10), pages 1-12, May.
    10. Mohd Idris, Muhammad Nurariffudin & Hashim, Haslenda & Leduc, Sylvain & Yowargana, Ping & Kraxner, Florian & Woon, Kok Sin, 2021. "Deploying bioenergy for decarbonizing Malaysian energy sectors and alleviating renewable energy poverty," Energy, Elsevier, vol. 232(C).
    11. Mohd Idris, Muhammad Nurariffudin & Leduc, Sylvain & Yowargana, Ping & Hashim, Haslenda & Kraxner, Florian, 2021. "Spatio-temporal assessment of the impact of intensive palm oil-based bioenergy deployment on cross-sectoral energy decarbonization," Applied Energy, Elsevier, vol. 285(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Truong, An Ha & Ha-Duong, Minh & Tran, Hoang Anh, 2022. "Economics of co-firing rice straw in coal power plants in Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. an Ha Truong & Minh Ha-Duong, 2021. "Economics of co-firing rice straw in coal power plants in Vietnam," Working Papers hal-03277278, HAL.
    3. Aviso, K.B. & Sy, C.L. & Tan, R.R. & Ubando, A.T., 2020. "Fuzzy optimization of carbon management networks based on direct and indirect biomass co-firing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    4. Vasiliki Tzelepi & Myrto Zeneli & Dimitrios-Sotirios Kourkoumpas & Emmanouil Karampinis & Antonios Gypakis & Nikos Nikolopoulos & Panagiotis Grammelis, 2020. "Biomass Availability in Europe as an Alternative Fuel for Full Conversion of Lignite Power Plants: A Critical Review," Energies, MDPI, vol. 13(13), pages 1-26, July.
    5. Wen, Shaoting & Buyukada, Musa & Evrendilek, Fatih & Liu, Jingyong, 2020. "Uncertainty and sensitivity analyses of co-combustion/pyrolysis of textile dyeing sludge and incense sticks: Regression and machine-learning models," Renewable Energy, Elsevier, vol. 151(C), pages 463-474.
    6. Zhang, Yun-Long & Liu, Lan-Cui & Kang, Jia-Ning & Peng, Song & Mi, Zhifu & Liao, Hua & Wei, Yi-Ming, 2024. "Economic feasibility assessment of coal-biomass co-firing power generation technology," Energy, Elsevier, vol. 296(C).
    7. Arkadiusz Piwowar & Maciej Dzikuć, 2019. "Development of Renewable Energy Sources in the Context of Threats Resulting from Low-Altitude Emissions in Rural Areas in Poland: A Review," Energies, MDPI, vol. 12(18), pages 1-15, September.
    8. Yang, Bo & Wei, Yi-Ming & Hou, Yunbing & Li, Hui & Wang, Pengtao, 2019. "Life cycle environmental impact assessment of fuel mix-based biomass co-firing plants with CO2 capture and storage," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    9. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    10. Li, Jin & Wang, Rui & Li, Haoran & Nie, Yaoyu & Song, Xinke & Li, Mingyu & Shi, Mai & Zheng, Xinzhu & Cai, Wenjia & Wang, Can, 2021. "Unit-level cost-benefit analysis for coal power plants retrofitted with biomass co-firing at a national level by combined GIS and life cycle assessment," Applied Energy, Elsevier, vol. 285(C).
    11. Huang, Qian & Xu, Jiuping, 2023. "Carbon tax revenue recycling for biomass/coal co-firing using Stackelberg game: A case study of Jiangsu province, China," Energy, Elsevier, vol. 272(C).
    12. Tong, Huanhuan & Yao, Zhiyi & Lim, Jun Wei & Mao, Liwei & Zhang, Jingxing & Ge, Tian Shu & Peng, Ying Hong & Wang, Chi-Hwa & Tong, Yen Wah, 2018. "Harvest green energy through energy recovery from waste: A technology review and an assessment of Singapore," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 163-178.
    13. Negrão, Djanira R. & Grandis, Adriana & Buckeridge, Marcos S. & Rocha, George J.M. & Leal, Manoel Regis L.V. & Driemeier, Carlos, 2021. "Inorganics in sugarcane bagasse and straw and their impacts for bioenergy and biorefining: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    14. Ewa Chomać-Pierzecka & Hubert Gąsiński & Joanna Rogozińska-Mitrut & Dariusz Soboń & Sebastian Zupok, 2023. "Review of Selected Aspects of Wind Energy Market Development in Poland and Lithuania in the Face of Current Challenges," Energies, MDPI, vol. 16(1), pages 1-17, January.
    15. Weldu, Yemane W. & Assefa, Getachew & Jolliet, Olivier, 2017. "Life cycle human health and ecotoxicological impacts assessment of electricity production from wood biomass compared to coal fuel," Applied Energy, Elsevier, vol. 187(C), pages 564-574.
    16. Manouchehrinejad, Maryam & Bilek, E.M. Ted & Mani, Sudhagar, 2021. "Techno-economic analysis of integrated torrefaction and pelletization systems to produce torrefied wood pellets," Renewable Energy, Elsevier, vol. 178(C), pages 483-493.
    17. Mohd Idris, Muhammad Nurariffudin & Hashim, Haslenda & Leduc, Sylvain & Yowargana, Ping & Kraxner, Florian & Woon, Kok Sin, 2021. "Deploying bioenergy for decarbonizing Malaysian energy sectors and alleviating renewable energy poverty," Energy, Elsevier, vol. 232(C).
    18. Qing Yin & Muhan Yu & Xueliang Ma & Ying Liu & Xunzhi Yin, 2023. "The Role of Straw Materials in Energy-Efficient Buildings: Current Perspectives and Future Trends," Energies, MDPI, vol. 16(8), pages 1-24, April.
    19. Yi, Qun & Zhao, Yingjie & Huang, Yi & Wei, Guoqiang & Hao, Yanhong & Feng, Jie & Mohamed, Usama & Pourkashanian, Mohamed & Nimmo, William & Li, Wenying, 2018. "Life cycle energy-economic-CO2 emissions evaluation of biomass/coal, with and without CO2 capture and storage, in a pulverized fuel combustion power plant in the United Kingdom," Applied Energy, Elsevier, vol. 225(C), pages 258-272.
    20. Wȩdzik, Andrzej & Siewierski, Tomasz & Szypowski, Michał, 2017. "Green certificates market in Poland – The sources of crisis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 490-503.

    More about this item

    Keywords

    Co-firing; emission reduction; bioenergy; rice residues; greenhouse gas emissions; spatial explicit exploration;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01974493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.