[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00540256.html
   My bibliography  Save this paper

On risk aversion with two risks

Author

Listed:
  • Marco Scarsini

    (GREGH - Groupement de Recherche et d'Etudes en Gestion à HEC - HEC Paris - Ecole des Hautes Etudes Commerciales - CNRS - Centre National de la Recherche Scientifique, Dipartimento di Scienze Economiche e Aziendali - LUISS - Libera Università Internazionale degli Studi Sociali Guido Carli [Roma])

  • Israel Finkelshtain
  • Offer Kella
Abstract
We consider necessary and sufficient conditions for risk aversion to one risk in the presence of another non-insurable risk. The conditions (on the bivariate utility function) vary according to the conditions imposed on the joint distribution of the risks. If only independent risks are considered, then any utility function which is concave in its first argument will satisfy the condition of risk aversion. If risk aversion is required for all possible pairs of risks, then the bivariate utility function has to be additively separable. An interesting intermediate case is obtained for random pairs that possess a weak form of positive dependence. In that case, the utility function will exhibit both risk aversion (concavity) in its first argument, and bivariate risk aversion (submodularity).

Suggested Citation

  • Marco Scarsini & Israel Finkelshtain & Offer Kella, 1999. "On risk aversion with two risks," Post-Print hal-00540256, HAL.
  • Handle: RePEc:hal:journl:hal-00540256
    DOI: 10.1016/S0304-4068(97)00058-X
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rinott, Yosef & Samuel-Cahn, Ester, 1991. "Orderings of optimal stopping values and prophet inequalities for certain multivariate distributions," Journal of Multivariate Analysis, Elsevier, vol. 37(1), pages 104-114, April.
    2. Kihlstrom, Richard E. & Mirman, Leonard J., 1974. "Risk aversion with many commodities," Journal of Economic Theory, Elsevier, vol. 8(3), pages 361-388, July.
    3. Pratt, John W, 1990. "The Logic of Partial-Risk Aversion: Paradox Lost," Journal of Risk and Uncertainty, Springer, vol. 3(2), pages 105-113, June.
    4. Grant, Simon & Kajii, Atsushi & Polak, Ben, 1992. "Many good risks: An interpretation of multivariate risk and risk aversion without the Independence axiom," Journal of Economic Theory, Elsevier, vol. 56(2), pages 338-351, April.
    5. Ian Jewitt, 1987. "Risk Aversion and the Choice Between Risky Prospects: The Preservation of Comparative Statics Results," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 54(1), pages 73-85.
    6. Grant, Simon & Kajii, Atsushi & Polak, Ben, 1992. "Many good choice Axioms: When can many-good lotteries be treated as money lotteries?," Journal of Economic Theory, Elsevier, vol. 56(2), pages 313-337, April.
    7. Larry G. Epstein & Stephen M. Tanny, 1980. "Increasing Generalized Correlation: A Definition and Some Economic Consequences," Canadian Journal of Economics, Canadian Economics Association, vol. 13(1), pages 16-34, February.
    8. Pratt, John W, 1988. "Aversion to One Risk in the Presence of Others," Journal of Risk and Uncertainty, Springer, vol. 1(4), pages 395-413, December.
    9. Scott F. Richard, 1975. "Multivariate Risk Aversion, Utility Independence and Separable Utility Functions," Management Science, INFORMS, vol. 22(1), pages 12-21, September.
    10. K. C. Mosler, 1984. "Stochastic Dominance Decision Rules when the Attributes are Utility Independent," Management Science, INFORMS, vol. 30(11), pages 1311-1322, November.
    11. Ross, Stephen A, 1981. "Some Stronger Measures of Risk Aversion in the Small and the Large with Applications," Econometrica, Econometric Society, vol. 49(3), pages 621-638, May.
    12. Kihlstrom, Richard E & Romer, David & Williams, Steve, 1981. "Risk Aversion with Random Initial Wealth," Econometrica, Econometric Society, vol. 49(4), pages 911-920, June.
    13. Scarsini, Marco, 1985. "Stochastic dominance with pair-wise risk aversion," Journal of Mathematical Economics, Elsevier, vol. 14(2), pages 187-201, April.
    14. Gollier, Christian & Pratt, John W, 1996. "Risk Vulnerability and the Tempering Effect of Background Risk," Econometrica, Econometric Society, vol. 64(5), pages 1109-1123, September.
    15. Jewitt, Ian, 1986. "A note on comparative statics and stochastic dominance," Journal of Mathematical Economics, Elsevier, vol. 15(3), pages 249-254, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoph Heinzel, 2014. "Term structure of discount rates under multivariate s-ordered consumption growth," Working Papers SMART 14-01, INRAE UMR SMART.
    2. Crainich, David & Eeckhoudt, Louis & Le Courtois, Olivier, 2017. "Health and portfolio choices: A diffidence approach," European Journal of Operational Research, Elsevier, vol. 259(1), pages 273-279.
    3. Gregor Dorfleitner & Michael Krapp, 2007. "On multiattributive risk aversion: some clarifying results," Review of Managerial Science, Springer, vol. 1(1), pages 47-63, April.
    4. Dionne, Georges & Li, Jingyuan, 2014. "Comparative Ross risk aversion in the presence of mean dependent risks," Journal of Mathematical Economics, Elsevier, vol. 51(C), pages 128-135.
    5. Li, Jingyuan & Liu, Dongri & Wang, Jianli, 2016. "Risk aversion with two risks: A theoretical extension," Journal of Mathematical Economics, Elsevier, vol. 63(C), pages 100-105.
    6. Donald C., Rudow, 2005. "Preferences and Increased Risk Aversion under a General Framework of Stochastic Dominance," MPRA Paper 41191, University Library of Munich, Germany, revised 07 Jun 2005.
    7. Kimball, Miles S, 1993. "Standard Risk Aversion," Econometrica, Econometric Society, vol. 61(3), pages 589-611, May.
    8. Günter Franke & Harris Schlesinger & Richard C. Stapleton, 2006. "Multiplicative Background Risk," Management Science, INFORMS, vol. 52(1), pages 146-153, January.
    9. Dana, Rose-Anne & Scarsini, Marco, 2007. "Optimal risk sharing with background risk," Journal of Economic Theory, Elsevier, vol. 133(1), pages 152-176, March.
    10. Sévi, Benoît, 2010. "The newsvendor problem under multiplicative background risk," European Journal of Operational Research, Elsevier, vol. 200(3), pages 918-923, February.
    11. Abdelaziz, F. Ben & Lang, P. & Nadeau, R., 1995. "Distributional efficiency in multiobjective stochastic linear programming," European Journal of Operational Research, Elsevier, vol. 85(2), pages 399-415, September.
    12. Georges Dionne & Jingyuan Li, 2012. "Comparative Ross Risk Aversion in the Presence of Quadrant Dependent Risks," Cahiers de recherche 1226, CIRPEE.
    13. Octave Jokung, 2013. "Changes in multiplicative background risk and risk-taking behavior," Theory and Decision, Springer, vol. 74(1), pages 127-149, January.
    14. Liu, Liqun & Meyer, Jack, 2013. "Substituting one risk increase for another: A method for measuring risk aversion," Journal of Economic Theory, Elsevier, vol. 148(6), pages 2706-2718.
    15. Yonatan Aumann, 2015. "A conceptual foundation for the theory of risk aversion," Discussion Paper Series dp686, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    16. Malevergne, Y. & Rey, B., 2009. "On cross-risk vulnerability," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 224-229, October.
    17. Finkelshtain, Israel & Chalfant, James, 1991. "Aversion to Income Risk in the Presence of Multivariable Risk," CUDARE Working Papers 198580, University of California, Berkeley, Department of Agricultural and Resource Economics.
    18. Gelles, Gregory M. & Mitchell, Douglas W., 2002. "Increasingly mean-seeking utility functions and n-asset portfolios," The Quarterly Review of Economics and Finance, Elsevier, vol. 42(5), pages 911-919.
    19. Henry Chiu, W., 2020. "Financial risk taking in the presence of correlated non-financial background risk," Journal of Mathematical Economics, Elsevier, vol. 88(C), pages 167-179.
    20. Robert F. Nau, 2003. "A Generalization of Pratt-Arrow Measure to Nonexpected-Utility Preferences and Inseparable Probability and Utility," Management Science, INFORMS, vol. 49(8), pages 1089-1104, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00540256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.