(This abstract was borrowed from another version of this item.)"> (This abstract was borrowed from another version of this item.)">
[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/hal/cesptp/hal-00308978.html
   My bibliography  Save this paper

The Impact of the 9/11 Events on the American and French Stock Markets

Author

Listed:
  • Bertrand Maillet

    (TEAM - Théories et Applications en Microéconomie et Macroéconomie - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

  • Thierry Michel
Abstract
Markets reacted strongly to the World Trade Center attacks both in Europe and in the United States. The extent of this crisis was difficult to assess at the time, underlining the need for a specific tool to measure the magnitude of financial crises. A first measure was recently proposed and applied to the foreign exchange market by Zumbach et al. (2000a,b). Their measure relies on an analogy with geophysics; the related index of market shocks (IMS) that we propose here is also the counterpart of the Richter scale used for earthquakes. We apply this measure on the French and the American stock markets to put large market events into perspective. The crisis triggered by the September attacks was actually the worst since 1987, and the ninth worst when compared to major historical ones.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Bertrand Maillet & Thierry Michel, 2005. "The Impact of the 9/11 Events on the American and French Stock Markets," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00308978, HAL.
  • Handle: RePEc:hal:cesptp:hal-00308978
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fulvio Corsi & Gilles Zumbach & Ulrich A. Muller & Michel M. Dacorogna, 2001. "Consistent High-precision Volatility from High-frequency Data," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 30(2), pages 183-204, July.
    2. Benoit Mandelbrot & Adlai Fisher & Laurent Calvet, 1997. "A Multifractal Model of Asset Returns," Cowles Foundation Discussion Papers 1164, Cowles Foundation for Research in Economics, Yale University.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konstantinos Drakos, 2010. "The determinants of terrorist shocks' cross‐market transmission," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 11(2), pages 147-163, March.
    2. Thai-Ha Le & Donghyun Park & Cong-Phu-Khanh Tran & Binh Tran-Nam, 2018. "The Impact of the Hai Yang Shi You 981 Event on Vietnam’s Stock Markets," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 17(3_suppl), pages 344-375, December.
    3. John Garvey & Martin Mullins, 2009. "An Examination of "New" and "Old" Terrorism Using High-Frequency Data," Economics of Security Working Paper Series 18, DIW Berlin, German Institute for Economic Research.
    4. Alexander Subbotin, 2008. "A multi-horizon scale for volatility," Post-Print halshs-00261514, HAL.
    5. Gan Jin & Md Rafiul Karim & Günther G. Schulze, 2024. "The Stock Market Effects of Islamist versus Non-Islamist Terror," CESifo Working Paper Series 10960, CESifo.
    6. Goutam Dutta & Pankaj Jha & Arnab Kumar Laha & Neeraj Mohan, 2006. "Artificial Neural Network Models for Forecasting Stock Price Index in the Bombay Stock Exchange," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 5(3), pages 283-295, December.
    7. Peng, Kang-Lin & Wu, Chih-Hung & Lin, Pearl M.C. & Kou, IokTeng Esther, 2023. "Investor sentiment in the tourism stock market," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    8. Bos, J.W.B. & Frömmel, M. & Lamers, M., 2013. "FDI, terrorism and the availability heuristic for U.S. investors before and after 9/11," Research Memorandum 047, Maastricht University, Graduate School of Business and Economics (GSBE).
    9. Charles, Amelie & Darne, Olivier, 2006. "Large shocks and the September 11th terrorist attacks on international stock markets," Economic Modelling, Elsevier, vol. 23(4), pages 683-698, July.
    10. Blau, Benjamin M. & Griffith, Todd G., 2016. "Price clustering and the stability of stock prices," Journal of Business Research, Elsevier, vol. 69(10), pages 3933-3942.
    11. Corbet, Shaen & Gurdgiev, Constantin & Meegan, Andrew, 2018. "Long-term stock market volatility and the influence of terrorist attacks in Europe," The Quarterly Review of Economics and Finance, Elsevier, vol. 68(C), pages 118-131.
    12. Li Cheng & Jermoe Kueh Swee Hui, 2023. "A Research on the Impact of Global Stock Market Co-movement during Covid-19 Epidemic," International Business Research, Canadian Center of Science and Education, vol. 16(3), pages 1-31, March.
    13. Konstantinos Drakos, 2009. "Cross-Country Stock Market Reactions to Major Terror Events: The Role of Risk Perception," Economics of Security Working Paper Series 16, DIW Berlin, German Institute for Economic Research.
    14. Narayan, S. & Le, T.-H. & Sriananthakumar, S., 2018. "The influence of terrorism risk on stock market integration: Evidence from eight OECD countries," International Review of Financial Analysis, Elsevier, vol. 58(C), pages 247-259.
    15. Abdelbaki, Hisham, 2013. "The Impact of Arab Spring on Stock Market Performance," MPRA Paper 54814, University Library of Munich, Germany.
    16. John Garvey & Martin Mullins, 2008. "Contemporary Terrorism: Risk Perception in the London Options Market," Risk Analysis, John Wiley & Sons, vol. 28(1), pages 151-160, February.
    17. Chang, Chiu-Lan & Cai, Qingyun, 2023. "Stock return anomalies identification during the Covid-19 with the application of a grouped multiple comparison procedure," Economic Analysis and Policy, Elsevier, vol. 79(C), pages 168-183.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor Olkhov, 2023. "Market-Based Probability of Stock Returns," Papers 2302.07935, arXiv.org, revised Feb 2024.
    2. Thomas Theobald, 2015. "Agent-based risk management – a regulatory approach to financial markets," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 42(5), pages 780-820, October.
    3. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    4. Mulligan, Robert F., 2004. "Fractal analysis of highly volatile markets: an application to technology equities," The Quarterly Review of Economics and Finance, Elsevier, vol. 44(1), pages 155-179, February.
    5. Bollerslev, Tim & Kretschmer, Uta & Pigorsch, Christian & Tauchen, George, 2009. "A discrete-time model for daily S & P500 returns and realized variations: Jumps and leverage effects," Journal of Econometrics, Elsevier, vol. 150(2), pages 151-166, June.
    6. Selçuk, Faruk & Gençay, Ramazan, 2006. "Intraday dynamics of stock market returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 375-387.
    7. Aslam, Faheem & Aziz, Saqib & Nguyen, Duc Khuong & Mughal, Khurrum S. & Khan, Maaz, 2020. "On the efficiency of foreign exchange markets in times of the COVID-19 pandemic," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    8. Cornelis A. Los & Rossitsa M. Yalamova, 2004. "Multi-Fractal Spectral Analysis of the 1987 Stock Market Crash," Finance 0409050, University Library of Munich, Germany.
    9. Decrouez, Geoffrey & Hambly, Ben & Jones, Owen Dafydd, 2015. "The Hausdorff spectrum of a class of multifractal processes," Stochastic Processes and their Applications, Elsevier, vol. 125(4), pages 1541-1568.
    10. Calvet, Laurent E. & Fisher, Adlai J., 2008. "Multifrequency jump-diffusions: An equilibrium approach," Journal of Mathematical Economics, Elsevier, vol. 44(2), pages 207-226, January.
    11. Thomas Lux, 2004. "Detecting Multifractal Properties In Asset Returns: The Failure Of The "Scaling Estimator"," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 15(04), pages 481-491.
    12. Bikramaditya Ghosh & Spyros Papathanasiou & Dimitrios Kenourgios, 2022. "Cross-Country Linkages and Asymmetries of Sovereign Risk Pluralistic Investigation of CDS Spreads," Sustainability, MDPI, vol. 14(21), pages 1-10, October.
    13. Onali, Enrico & Goddard, John, 2011. "Are European equity markets efficient? New evidence from fractal analysis," International Review of Financial Analysis, Elsevier, vol. 20(2), pages 59-67, April.
    14. Chen, Wang & Wei, Yu & Lang, Qiaoqi & Lin, Yu & Liu, Maojuan, 2014. "Financial market volatility and contagion effect: A copula–multifractal volatility approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 289-300.
    15. Chen, Fei & Diebold, Francis X. & Schorfheide, Frank, 2013. "A Markov-switching multifractal inter-trade duration model, with application to US equities," Journal of Econometrics, Elsevier, vol. 177(2), pages 320-342.
    16. Bhandari, Avishek, 2020. "Long memory and fractality among global equity markets: A multivariate wavelet approach," MPRA Paper 99653, University Library of Munich, Germany.
    17. DeMiguel, Victor & Plyakha, Yuliya & Uppal, Raman & Vilkov, Grigory, 2013. "Improving Portfolio Selection Using Option-Implied Volatility and Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(6), pages 1813-1845, December.
    18. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    19. A. Saichev & D. Sornette, 2014. "A simple microstructure return model explaining microstructure noise and Epps effects," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 25(06), pages 1-36.
    20. Todd Zorick & Mark A Mandelkern, 2013. "Multifractal Detrended Fluctuation Analysis of Human EEG: Preliminary Investigation and Comparison with the Wavelet Transform Modulus Maxima Technique," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-7, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:hal-00308978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.