[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/grz/wpaper/2019-08.html
   My bibliography  Save this paper

Conditional variance forecasts for long-term stock returns

Author

Listed:
  • Enno Mammen

    (University of Heidelberg, Germany)

  • Jens Perch Nielsen

    (Cass Business School, City, University of London, UK)

  • Michael Scholz

    (University of Graz, Austria)

  • Stefan Sperlich

    (Universite de Geneve, Switzerland)

Abstract
In this paper, we apply machine learning to forecast the conditional variance of long-term stock returns measured in excess of different benchmarks, including the short-term interest rate, long-term interest rate, earnings-by-price ratio, and inflation. In particular, we apply and implement in a two-step procedure a fully nonparametric smoother with the covariates and the smoothing parameters chosen via cross-validation. We find that volatility forecastability is much less important at longer horizons regardless of the chosen model and that the homoscedastic historical average of the squared return prediction errors gives an adequate approximation of the unobserved realized conditional variance for both the one-year and five-year horizon.

Suggested Citation

  • Enno Mammen & Jens Perch Nielsen & Michael Scholz & Stefan Sperlich, 2019. "Conditional variance forecasts for long-term stock returns," Graz Economics Papers 2019-08, University of Graz, Department of Economics.
  • Handle: RePEc:grz:wpaper:2019-08
    as

    Download full text from publisher

    File URL: https://unipub.uni-graz.at/obvugrveroeff/download/pdf/9619695?originalFilename=true
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vali Asimit & Ioannis Kyriakou & Jens Perch Nielsen, 2020. "Special Issue “Machine Learning in Insurance”," Risks, MDPI, vol. 8(2), pages 1-2, May.
    2. Ioannis Kyriakou & Parastoo Mousavi & Jens Perch Nielsen & Michael Scholz, 2021. "Short-Term Exuberance and Long-Term Stability: A Simultaneous Optimization of Stock Return Predictions for Short and Long Horizons," Mathematics, MDPI, vol. 9(6), pages 1-19, March.
    3. Christian Fieberg & Daniel Metko & Thorsten Poddig & Thomas Loy, 2023. "Machine learning techniques for cross-sectional equity returns’ prediction," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 289-323, March.
    4. Ioannis Kyriakou & Parastoo Mousavi & Jens Perch Nielsen & Michael Scholz, 2020. "Longer-Term Forecasting of Excess Stock Returns—The Five-Year Case," Mathematics, MDPI, vol. 8(6), pages 1-20, June.
    5. Gerrard, Russell & Hiabu, Munir & Nielsen, Jens Perch & Vodička, Peter, 2020. "Long-term real dynamic investment planning," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 90-103.
    6. José María Sarabia & Faustino Prieto & Vanesa Jordá & Stefan Sperlich, 2020. "A Note on Combining Machine Learning with Statistical Modeling for Financial Data Analysis," Risks, MDPI, vol. 8(2), pages 1-14, April.
    7. Ioannis Kyriakou & Parastoo Mousavi & Jens Perch Nielsen & Michael Scholz, 2020. "Short-Term Exuberance and long-term stability: A simultaneous optimization of stock return predictions for short and long horizons," Graz Economics Papers 2020-20, University of Graz, Department of Economics.
    8. Parastoo Mousavi, 2021. "Debt-by-Price Ratio, End-of-Year Economic Growth, and Long-Term Prediction of Stock Returns," Mathematics, MDPI, vol. 9(13), pages 1-18, July.

    More about this item

    Keywords

    Benchmark; Cross-validation; Prediction; Stock return volatility; Long-term forecasts; Overlapping returns; Autocorrelation;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:grz:wpaper:2019-08. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stefan Borsky (email available below). General contact details of provider: https://edirc.repec.org/data/vgrazat.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.